about summary refs log tree commit diff stats
path: root/tools/tangle.readme.md
blob: be61d40ecf03bdb65eaaa9abdb6cb8e7daa18967 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
[Literate Programming](https://en.wikipedia.org/wiki/Literate_programming)
tool to convert Mu's layers into compilable form.

Mu's tangling directives differ from Knuth's classic implementation. The
classical approach starts out with labeled subsystems that are initially
empty, and adds code to them using two major directives:

```
<name> ≡
<code>
```

```
<name> +≡
<code>
```

_(`<code>` can span multiple lines.)_

This approach is best suited for top-down exposition.

On the other hand, Mu's tangling directives are better suited for a cleaned-up
history of a codebase. Subsystems start out with a simple skeleton of the core
of the program. Later versions then tell a story of the evolution of the
program, with each version colocating all the code related to new features.

Read more:
* http://akkartik.name/post/wart-layers
* http://akkartik.name/post/literate-programming
* https://github.com/akkartik/mu/blob/master/000organization.cc

## directives

Add code to a project:

```
:(code)
<code>
```

Insert code before a specific line:

```
:(before <waypoint>)
<code>
```

Here `<waypoint>` is a substring matching a single line in the codebase. (We
never use regular expressions.) Surround the substring in `"` quotes if it
spans multiple words.

Insert code _after_ a specific line:

```
:(after <waypoint>)
<code>
```

Delete a specific previously-added line (because it's not needed in a newer
version).

```
:(delete <line>)
```

Delete a block of code starting with a given header and surrounded by `{` and
`}`:

```
:(delete{} <header>)
```

_(Caveat: doesn't directly support C's `do`..`while` loops.)_

Replace a specific line with new code:

```
:(replace <line>)
<code>
```

This is identical to:
```
:(before <line>)
<code>
:(delete <line>)
```
_(Assuming `<code>` did not insert a new line matching the substring `<line>`.)_

Replace a block of code with another:

```
:(replace{} <header>)
<code>
```

Insert code before or after a substring pattern that isn't quite a unique
waypoint in the whole codebase:

```
:(before <line> following <waypoint>)
<code>
:(after <line> following <waypoint>)
<code>
```

```
:(before <waypoint> then <line>)
<code>
:(after <waypoint> then <line>)
<code>
```
1' href='#n231'>231 232 233 234 235 236












































                                                                                                 
                                   















                                                                                        
                                          










                                                                             
                                   













                                                                            














































                                                                                   

















































                                                                                  

















































                                                                                   
//: instructions that (immediately) contain an argument to act with

:(scenario add_imm32_to_r32)
% Reg[3].i = 1;
# op  ModRM   SIB   displacement  immediate
  81  c3                          0a 0b 0c 0d  # add 0x0d0c0b0a to EBX (reg 3)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is reg 3
+run: subop add
+run: storing 0x0d0c0b0b

:(before "End Single-Byte Opcodes")
case 0x81: {  // combine imm32 with r/m32
  uint8_t modrm = next();
  int32_t arg2 = imm32();
  trace(2, "run") << "combine imm32 0x" << HEXWORD << arg2 << " with effective address" << end();
  int32_t* arg1 = effective_address(modrm);
  uint8_t subop = (modrm>>3)&0x7;  // middle 3 'reg opcode' bits
  switch (subop) {
  case 0:
    trace(2, "run") << "subop add" << end();
    BINARY_ARITHMETIC_OP(+, *arg1, arg2);
    break;
  // End Op 81 Subops
  default:
    cerr << "unrecognized sub-opcode after 81: " << NUM(subop) << '\n';
    exit(1);
  }
  break;
}

//:

:(scenario add_imm32_to_mem_at_r32)
% Reg[3].i = 0x60;
% Mem.at(0x60) = 1;
# op  ModR/M  SIB   displacement  immediate
  81  03                          0a 0b 0c 0d  # add 0x0d0c0b0a to *EBX (reg 3)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is mem at address 0x60 (reg 3)
+run: subop add
+run: storing 0x0d0c0b0b

//:: subtract

:(scenario subtract_imm32_from_eax)
% Reg[EAX].i = 0x0d0c0baa;
# op  ModR/M  SIB   displacement  immediate
  2d                              0a 0b 0c 0d  # subtract 0x0d0c0b0a from EAX (reg 0)
+run: subtract imm32 0x0d0c0b0a from reg EAX
+run: storing 0x000000a0

:(before "End Single-Byte Opcodes")
case 0x2d: {  // subtract imm32 from EAX
  int32_t arg2 = imm32();
  trace(2, "run") << "subtract imm32 0x" << HEXWORD << arg2 << " from reg EAX" << end();
  BINARY_ARITHMETIC_OP(-, Reg[EAX].i, arg2);
  break;
}

//:

:(scenario subtract_imm32_from_mem_at_r32)
% Reg[3].i = 0x60;
% Mem.at(0x60) = 10;
# op  ModRM   SIB   displacement  immediate
  81  2b                          01 00 00 00  # subtract 1 from *EBX (reg 3)
+run: combine imm32 0x00000001 with effective address
+run: effective address is mem at address 0x60 (reg 3)
+run: subop subtract
+run: storing 0x00000009

//:

:(scenario subtract_imm32_from_r32)
% Reg[3].i = 10;
# op  ModRM   SIB   displacement  immediate
  81  eb                          01 00 00 00  # subtract 1 from EBX (reg 3)
+run: combine imm32 0x00000001 with effective address
+run: effective address is reg 3
+run: subop subtract
+run: storing 0x00000009

:(before "End Op 81 Subops")
case 5: {
  trace(2, "run") << "subop subtract" << end();
  BINARY_ARITHMETIC_OP(-, *arg1, arg2);
  break;
}

//:: and

:(scenario and_imm32_with_eax)
% Reg[EAX].i = 0xff;
# op  ModR/M  SIB   displacement  immediate
  25                              0a 0b 0c 0d  # and 0x0d0c0b0a with EAX (reg 0)
+run: and imm32 0x0d0c0b0a with reg EAX
+run: storing 0x0000000a

:(before "End Single-Byte Opcodes")
case 0x25: {  // and imm32 with EAX
  int32_t arg2 = imm32();
  trace(2, "run") << "and imm32 0x" << HEXWORD << arg2 << " with reg EAX" << end();
  BINARY_BITWISE_OP(&, Reg[EAX].i, arg2);
  break;
}

//:

:(scenario and_imm32_with_mem_at_r32)
% Reg[3].i = 0x60;
% Mem.at(0x60) = 0xff;
# op  ModRM   SIB   displacement  immediate
  81  23                          0a 0b 0c 0d  # and 0x0d0c0b0a with *EBX (reg 3)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is mem at address 0x60 (reg 3)
+run: subop and
+run: storing 0x0000000a

//:

:(scenario and_imm32_with_r32)
% Reg[3].i = 0xff;
# op  ModRM   SIB   displacement  immediate
  81  e3                          0a 0b 0c 0d  # and 0x0d0c0b0a with EBX (reg 3)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is reg 3
+run: subop and
+run: storing 0x0000000a

:(before "End Op 81 Subops")
case 4: {
  trace(2, "run") << "subop and" << end();
  BINARY_BITWISE_OP(&, *arg1, arg2);
  break;
}

//:: or

:(scenario or_imm32_with_eax)
% Reg[EAX].i = 0xd0c0b0a0;
# op  ModR/M  SIB   displacement  immediate
  0d                              0a 0b 0c 0d  # or 0x0d0c0b0a with EAX (reg 0)
+run: or imm32 0x0d0c0b0a with reg EAX
+run: storing 0xddccbbaa

:(before "End Single-Byte Opcodes")
case 0x0d: {  // or imm32 with EAX
  int32_t arg2 = imm32();
  trace(2, "run") << "or imm32 0x" << HEXWORD << arg2 << " with reg EAX" << end();
  BINARY_BITWISE_OP(|, Reg[EAX].i, arg2);
  break;
}

//:

:(scenario or_imm32_with_mem_at_r32)
% Reg[3].i = 0x60;
% Mem.at(0x60) = 0xa0;
% Mem.at(0x61) = 0xb0;
% Mem.at(0x62) = 0xc0;
% Mem.at(0x63) = 0xd0;
# op  ModRM   SIB   displacement  immediate
  81  0b                          0a 0b 0c 0d  # or 0x0d0c0b0a with *EBX (reg 3)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is mem at address 0x60 (reg 3)
+run: subop or
+run: storing 0xddccbbaa

//:

:(scenario or_imm32_with_r32)
% Reg[3].i = 0xd0c0b0a0;
# op  ModRM   SIB   displacement  immediate
  81  cb                          0a 0b 0c 0d  # or 0x0d0c0b0a with EBX (reg 3)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is reg 3
+run: subop or
+run: storing 0xddccbbaa

:(before "End Op 81 Subops")
case 1: {
  trace(2, "run") << "subop or" << end();
  BINARY_BITWISE_OP(|, *arg1, arg2);
  break;
}

//:: xor

:(scenario xor_imm32_with_eax)
% Reg[EAX].i = 0xddccb0a0;
# op  ModR/M  SIB   displacement  immediate
  35                              0a 0b 0c 0d  # xor 0x0d0c0b0a with EAX (reg 0)
+run: xor imm32 0x0d0c0b0a with reg EAX
+run: storing 0xd0c0bbaa

:(before "End Single-Byte Opcodes")
case 0x35: {  // xor imm32 with EAX
  int32_t arg2 = imm32();
  trace(2, "run") << "xor imm32 0x" << HEXWORD << arg2 << " with reg EAX" << end();
  BINARY_BITWISE_OP(^, Reg[EAX].i, arg2);
  break;
}

//:

:(scenario xor_imm32_with_mem_at_r32)
% Reg[3].i = 0x60;
% Mem.at(0x60) = 0xa0;
% Mem.at(0x61) = 0xb0;
% Mem.at(0x62) = 0xc0;
% Mem.at(0x63) = 0xd0;
# op  ModRM   SIB   displacement  immediate
  81  33                          0a 0b 0c 0d  # xor 0x0d0c0b0a with *EBX (reg 3)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is mem at address 0x60 (reg 3)
+run: subop xor
+run: storing 0xddccbbaa

//:

:(scenario xor_imm32_with_r32)
% Reg[3].i = 0xd0c0b0a0;
# op  ModRM   SIB   displacement  immediate
  81  f3                          0a 0b 0c 0d  # xor 0x0d0c0b0a with EBX (reg 3)
+run: combine imm32 0x0d0c0b0a with effective address
+run: effective address is reg 3
+run: subop xor
+run: storing 0xddccbbaa

:(before "End Op 81 Subops")
case 6: {
  trace(2, "run") << "subop xor" << end();
  BINARY_BITWISE_OP(^, *arg1, arg2);
  break;
}