about summary refs log tree commit diff stats
path: root/source_edit.lua
diff options
context:
space:
mode:
Diffstat (limited to 'source_edit.lua')
-rw-r--r--source_edit.lua2
1 files changed, 1 insertions, 1 deletions
diff --git a/source_edit.lua b/source_edit.lua
index f9722eb..09590be 100644
--- a/source_edit.lua
+++ b/source_edit.lua
@@ -314,7 +314,7 @@ function edit.keychord_press(State, chord, key)
       -- printable character created using shift key => delete selection
       -- (we're not creating any ctrl-shift- or alt-shift- combinations using regular/printable keys)
       (not App.shift_down() or utf8.len(key) == 1) and
-      chord ~= 'C-a' and chord ~= 'C-c' and chord ~= 'C-x' and chord ~= 'backspace' and backspace ~= 'delete' and not App.is_cursor_movement(chord) then
+      chord ~= 'C-a' and chord ~= 'C-c' and chord ~= 'C-x' and chord ~= 'backspace' and chord ~= 'delete' and not App.is_cursor_movement(chord) then
     Text.delete_selection(State, State.left, State.right)
   end
   if State.search_term then
ef='#n119'>119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
#
#
#           The Nim Compiler
#        (c) Copyright 2015 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This file implements the FFI part of the evaluator for Nim code.

import ast, types, options, tables, dynlib, msgs, lineinfos
import pkg/libffi

when defined(windows):
  const libcDll = "msvcrt.dll"
elif defined(linux):
  const libcDll = "libc.so(.6|.5|)"
elif defined(osx):
  const libcDll = "/usr/lib/libSystem.dylib"
else:
  {.error: "`libcDll` not implemented on this platform".}

type
  TDllCache = tables.Table[string, LibHandle]
var
  gDllCache = initTable[string, LibHandle]()

when defined(windows):
  var gExeHandle = loadLib(os.getAppFilename())
else:
  var gExeHandle = loadLib()

proc getDll(conf: ConfigRef, cache: var TDllCache; dll: string; info: TLineInfo): pointer =
  if dll in cache:
    return cache[dll]
  var libs: seq[string]
  libCandidates(dll, libs)
  for c in libs:
    result = loadLib(c)
    if not result.isNil: break
  if result.isNil:
    globalError(conf, info, "cannot load: " & dll)
  cache[dll] = result

const
  nkPtrLit = nkIntLit # hopefully we can get rid of this hack soon

proc importcSymbol*(conf: ConfigRef, sym: PSym): PNode =
  let name = sym.cname # $sym.loc.r would point to internal name
  # the AST does not support untyped pointers directly, so we use an nkIntLit
  # that contains the address instead:
  result = newNodeIT(nkPtrLit, sym.info, sym.typ)
  when true:
    let lib = sym.annex
    if lib != nil and lib.path.kind notin {nkStrLit..nkTripleStrLit}:
      globalError(conf, sym.info, "dynlib needs to be a string lit")
    var theAddr: pointer
    if (lib.isNil or lib.kind == libHeader) and not gExeHandle.isNil:
      # first try this exe itself:
      theAddr = gExeHandle.symAddr(name)
      # then try libc:
      if theAddr.isNil:
        let dllhandle = getDll(conf, gDllCache, libcDll, sym.info)
        theAddr = dllhandle.symAddr(name)
    elif not lib.isNil:
      let dll = if lib.kind == libHeader: libcDll else: lib.path.strVal
      let dllhandle = getDll(conf, gDllCache, dll, sym.info)
      theAddr = dllhandle.symAddr(name)
    if theAddr.isNil: globalError(conf, sym.info, "cannot import: " & name)
    result.intVal = cast[ByteAddress](theAddr)

proc mapType(conf: ConfigRef, t: ast.PType): ptr libffi.Type =
  if t == nil: return addr libffi.type_void

  case t.kind
  of tyBool, tyEnum, tyChar, tyInt..tyInt64, tyUInt..tyUInt64, tySet:
    case getSize(conf, t)
    of 1: result = addr libffi.type_uint8
    of 2: result = addr libffi.type_sint16
    of 4: result = addr libffi.type_sint32
    of 8: result = addr libffi.type_sint64
    else: result = nil
  of tyFloat, tyFloat64: result = addr libffi.type_double
  of tyFloat32: result = addr libffi.type_float
  of tyVar, tyLent, tyPointer, tyPtr, tyRef, tyCString, tySequence, tyString, tyUntyped,
     tyTyped, tyTypeDesc, tyProc, tyArray, tyStatic, tyNil:
    result = addr libffi.type_pointer
  of tyDistinct, tyAlias, tySink:
    result = mapType(conf, t[0])
  else:
    result = nil
  # too risky:
  #of tyFloat128: result = addr libffi.type_longdouble

proc mapCallConv(conf: ConfigRef, cc: TCallingConvention, info: TLineInfo): TABI =
  case cc
  of ccDefault: result = DEFAULT_ABI
  of ccStdCall: result = when defined(windows) and defined(x86): STDCALL else: DEFAULT_ABI
  of ccCDecl: result = DEFAULT_ABI
  else:
    globalError(conf, info, "cannot map calling convention to FFI")

template rd(T, p: untyped): untyped = (cast[ptr T](p))[]
template wr(T, p, v: untyped): untyped = (cast[ptr T](p))[] = v
template `+!`(x, y: untyped): untyped =
  cast[pointer](cast[ByteAddress](x) + y)

proc packSize(conf: ConfigRef, v: PNode, typ: PType): int =
  ## computes the size of the blob
  case typ.kind
  of tyPtr, tyRef, tyVar, tyLent:
    if v.kind in {nkNilLit, nkPtrLit}:
      result = sizeof(pointer)
    else:
      result = sizeof(pointer) + packSize(conf, v[0], typ.lastSon)
  of tyDistinct, tyGenericInst, tyAlias, tySink:
    result = packSize(conf, v, typ[0])
  of tyArray:
    # consider: ptr array[0..1000_000, int] which is common for interfacing;
    # we use the real length here instead
    if v.kind in {nkNilLit, nkPtrLit}:
      result = sizeof(pointer)
    elif v.len != 0:
      result = v.len * packSize(conf, v[0], typ[1])
  else:
    result = getSize(conf, typ).int

proc pack(conf: ConfigRef, v: PNode, typ: PType, res: pointer)

proc getField(conf: ConfigRef, n: PNode; position: int): PSym =
  case n.kind
  of nkRecList:
    for i in 0..<n.len:
      result = getField(conf, n[i], position)
      if result != nil: return
  of nkRecCase:
    result = getField(conf, n[0], position)
    if result != nil: return
    for i in 1..<n.len:
      case n[i].kind
      of nkOfBranch, nkElse:
        result = getField(conf, lastSon(n[i]), position)
        if result != nil: return
      else: internalError(conf, n.info, "getField(record case branch)")
  of nkSym:
    if n.sym.position == position: result = n.sym
  else: discard

proc packObject(conf: ConfigRef, x: PNode, typ: PType, res: pointer) =
  internalAssert conf, x.kind in {nkObjConstr, nkPar, nkTupleConstr}
  # compute the field's offsets:
  discard getSize(conf, typ)
  for i in ord(x.kind == nkObjConstr)..<x.len:
    var it = x[i]
    if it.kind == nkExprColonExpr:
      internalAssert conf, it[0].kind == nkSym
      let field = it[0].sym
      pack(conf, it[1], field.typ, res +! field.offset)
    elif typ.n != nil:
      let field = getField(conf, typ.n, i)
      pack(conf, it, field.typ, res +! field.offset)
    else:
      # XXX: todo
      globalError(conf, x.info, "cannot pack unnamed tuple")

const maxPackDepth = 20
var packRecCheck = 0

proc pack(conf: ConfigRef, v: PNode, typ: PType, res: pointer) =
  template awr(T, v: untyped): untyped =
    wr(T, res, v)

  case typ.kind
  of tyBool: awr(bool, v.intVal != 0)
  of tyChar: awr(char, v.intVal.chr)
  of tyInt:  awr(int, v.intVal.int)
  of tyInt8: awr(int8, v.intVal.int8)
  of tyInt16: awr(int16, v.intVal.int16)
  of tyInt32: awr(int32, v.intVal.int32)
  of tyInt64: awr(int64, v.intVal.int64)
  of tyUInt: awr(uint, v.intVal.uint)
  of tyUInt8: awr(uint8, v.intVal.uint8)
  of tyUInt16: awr(uint16, v.intVal.uint16)
  of tyUInt32: awr(uint32, v.intVal.uint32)
  of tyUInt64: awr(uint64, v.intVal.uint64)
  of tyEnum, tySet:
    case getSize(conf, v.typ)
    of 1: awr(uint8, v.intVal.uint8)
    of 2: awr(uint16, v.intVal.uint16)
    of 4: awr(int32, v.intVal.int32)
    of 8: awr(int64, v.intVal.int64)
    else:
      globalError(conf, v.info, "cannot map value to FFI (tyEnum, tySet)")
  of tyFloat: awr(float, v.floatVal)
  of tyFloat32: awr(float32, v.floatVal)
  of tyFloat64: awr(float64, v.floatVal)

  of tyPointer, tyProc,  tyCString, tyString:
    if v.kind == nkNilLit:
      # nothing to do since the memory is 0 initialized anyway
      discard
    elif v.kind == nkPtrLit:
      awr(pointer, cast[pointer](v.intVal))
    elif v.kind in {nkStrLit..nkTripleStrLit}:
      awr(cstring, cstring(v.strVal))
    else:
      globalError(conf, v.info, "cannot map pointer/proc value to FFI")
  of tyPtr, tyRef, tyVar, tyLent:
    if v.kind == nkNilLit:
      # nothing to do since the memory is 0 initialized anyway
      discard
    elif v.kind == nkPtrLit:
      awr(pointer, cast[pointer](v.intVal))
    else:
      if packRecCheck > maxPackDepth:
        packRecCheck = 0
        globalError(conf, v.info, "cannot map value to FFI " & typeToString(v.typ))
      inc packRecCheck
      pack(conf, v[0], typ.lastSon, res +! sizeof(pointer))
      dec packRecCheck
      awr(pointer, res +! sizeof(pointer))
  of tyArray:
    let baseSize = getSize(conf, typ[1])
    for i in 0..<v.len:
      pack(conf, v[i], typ[1], res +! i * baseSize)
  of tyObject, tyTuple:
    packObject(conf, v, typ, res)
  of tyNil:
    discard
  of tyDistinct, tyGenericInst, tyAlias, tySink:
    pack(conf, v, typ[0], res)
  else:
    globalError(conf, v.info, "cannot map value to FFI " & typeToString(v.typ))

proc unpack(conf: ConfigRef, x: pointer, typ: PType, n: PNode): PNode

proc unpackObjectAdd(conf: ConfigRef, x: pointer, n, result: PNode) =
  case n.kind
  of nkRecList:
    for i in 0..<n.len:
      unpackObjectAdd(conf, x, n[i], result)
  of nkRecCase:
    globalError(conf, result.info, "case objects cannot be unpacked")
  of nkSym:
    var pair = newNodeI(nkExprColonExpr, result.info, 2)
    pair[0] = n
    pair[1] = unpack(conf, x +! n.sym.offset, n.sym.typ, nil)
    #echo "offset: ", n.sym.name.s, " ", n.sym.offset
    result.add pair
  else: discard

proc unpackObject(conf: ConfigRef, x: pointer, typ: PType, n: PNode): PNode =
  # compute the field's offsets:
  discard getSize(conf, typ)

  # iterate over any actual field of 'n' ... if n is nil we need to create
  # the nkPar node:
  if n.isNil:
    result = newNode(nkTupleConstr)
    result.typ = typ
    if typ.n.isNil:
      internalError(conf, "cannot unpack unnamed tuple")
    unpackObjectAdd(conf, x, typ.n, result)
  else:
    result = n
    if result.kind notin {nkObjConstr, nkPar, nkTupleConstr}:
      globalError(conf, n.info, "cannot map value from FFI")
    if typ.n.isNil:
      globalError(conf, n.info, "cannot unpack unnamed tuple")
    for i in ord(n.kind == nkObjConstr)..<n.len:
      var it = n[i]
      if it.kind == nkExprColonExpr:
        internalAssert conf, it[0].kind == nkSym
        let field = it[0].sym
        it[1] = unpack(conf, x +! field.offset, field.typ, it[1])
      else:
        let field = getField(conf, typ.n, i)
        n[i] = unpack(conf, x +! field.offset, field.typ, it)

proc unpackArray(conf: ConfigRef, x: pointer, typ: PType, n: PNode): PNode =
  if n.isNil:
    result = newNode(nkBracket)
    result.typ = typ
    newSeq(result.sons, lengthOrd(conf, typ).toInt)
  else:
    result = n
    if result.kind != nkBracket:
      globalError(conf, n.info, "cannot map value from FFI")
  let baseSize = getSize(conf, typ[1])
  for i in 0..<result.len:
    result[i] = unpack(conf, x +! i * baseSize, typ[1], result[i])

proc canonNodeKind(k: TNodeKind): TNodeKind =
  case k
  of nkCharLit..nkUInt64Lit: result = nkIntLit
  of nkFloatLit..nkFloat128Lit: result = nkFloatLit
  of nkStrLit..nkTripleStrLit: result = nkStrLit
  else: result = k

proc unpack(conf: ConfigRef, x: pointer, typ: PType, n: PNode): PNode =
  template aw(k, v, field: untyped): untyped =
    if n.isNil:
      result = newNode(k)
      result.typ = typ
    else:
      # check we have the right field:
      result = n
      if result.kind.canonNodeKind != k.canonNodeKind:
        #echo "expected ", k, " but got ", result.kind
        #debug result
        return newNodeI(nkExceptBranch, n.info)
        #globalError(conf, n.info, "cannot map value from FFI")
    result.field = v

  template setNil() =
    if n.isNil:
      result = newNode(nkNilLit)
      result.typ = typ
    else:
      reset n[]
      result = n
      result.kind = nkNilLit
      result.typ = typ

  template awi(kind, v: untyped): untyped = aw(kind, v, intVal)
  template awf(kind, v: untyped): untyped = aw(kind, v, floatVal)
  template aws(kind, v: untyped): untyped = aw(kind, v, strVal)

  case typ.kind
  of tyBool: awi(nkIntLit, rd(bool, x).ord)
  of tyChar: awi(nkCharLit, rd(char, x).ord)
  of tyInt:  awi(nkIntLit, rd(int, x))
  of tyInt8: awi(nkInt8Lit, rd(int8, x))
  of tyInt16: awi(nkInt16Lit, rd(int16, x))
  of tyInt32: awi(nkInt32Lit, rd(int32, x))
  of tyInt64: awi(nkInt64Lit, rd(int64, x))
  of tyUInt: awi(nkUIntLit, rd(uint, x).BiggestInt)
  of tyUInt8: awi(nkUInt8Lit, rd(uint8, x).BiggestInt)
  of tyUInt16: awi(nkUInt16Lit, rd(uint16, x).BiggestInt)
  of tyUInt32: awi(nkUInt32Lit, rd(uint32, x).BiggestInt)
  of tyUInt64: awi(nkUInt64Lit, rd(uint64, x).BiggestInt)
  of tyEnum:
    case getSize(conf, typ)
    of 1: awi(nkIntLit, rd(uint8, x).BiggestInt)
    of 2: awi(nkIntLit, rd(uint16, x).BiggestInt)
    of 4: awi(nkIntLit, rd(int32, x).BiggestInt)
    of 8: awi(nkIntLit, rd(int64, x).BiggestInt)
    else:
      globalError(conf, n.info, "cannot map value from FFI (tyEnum, tySet)")
  of tyFloat: awf(nkFloatLit, rd(float, x))
  of tyFloat32: awf(nkFloat32Lit, rd(float32, x))
  of tyFloat64: awf(nkFloat64Lit, rd(float64, x))
  of tyPointer, tyProc:
    let p = rd(pointer, x)
    if p.isNil:
      setNil()
    elif n != nil and n.kind == nkStrLit:
      # we passed a string literal as a pointer; however strings are already
      # in their unboxed representation so nothing it to be unpacked:
      result = n
    else:
      awi(nkPtrLit, cast[ByteAddress](p))
  of tyPtr, tyRef, tyVar, tyLent:
    let p = rd(pointer, x)
    if p.isNil:
      setNil()
    elif n == nil or n.kind == nkPtrLit:
      awi(nkPtrLit, cast[ByteAddress](p))
    elif n != nil and n.len == 1:
      internalAssert(conf, n.kind == nkRefTy)
      n[0] = unpack(conf, p, typ.lastSon, n[0])
      result = n
    else:
      globalError(conf, n.info, "cannot map value from FFI " & typeToString(typ))
  of tyObject, tyTuple:
    result = unpackObject(conf, x, typ, n)
  of tyArray:
    result = unpackArray(conf, x, typ, n)
  of tyCString, tyString:
    let p = rd(cstring, x)
    if p.isNil:
      setNil()
    else:
      aws(nkStrLit, $p)
  of tyNil:
    setNil()
  of tyDistinct, tyGenericInst, tyAlias, tySink:
    result = unpack(conf, x, typ.lastSon, n)
  else:
    # XXX what to do with 'array' here?
    globalError(conf, n.info, "cannot map value from FFI " & typeToString(typ))

proc fficast*(conf: ConfigRef, x: PNode, destTyp: PType): PNode =
  if x.kind == nkPtrLit and x.typ.kind in {tyPtr, tyRef, tyVar, tyLent, tyPointer,
                                           tyProc, tyCString, tyString,
                                           tySequence}:
    result = newNodeIT(x.kind, x.info, destTyp)
    result.intVal = x.intVal
  elif x.kind == nkNilLit:
    result = newNodeIT(x.kind, x.info, destTyp)
  else:
    # we play safe here and allocate the max possible size:
    let size = max(packSize(conf, x, x.typ), packSize(conf, x, destTyp))
    var a = alloc0(size)
    pack(conf, x, x.typ, a)
    # cast through a pointer needs a new inner object:
    let y = if x.kind == nkRefTy: newNodeI(nkRefTy, x.info, 1)
            else: x.copyTree
    y.typ = x.typ
    result = unpack(conf, a, destTyp, y)
    dealloc a

proc callForeignFunction*(conf: ConfigRef, call: PNode): PNode =
  internalAssert conf, call[0].kind == nkPtrLit

  var cif: TCif
  var sig: ParamList
  # use the arguments' types for varargs support:
  for i in 1..<call.len:
    sig[i-1] = mapType(conf, call[i].typ)
    if sig[i-1].isNil:
      globalError(conf, call.info, "cannot map FFI type")

  let typ = call[0].typ
  if prep_cif(cif, mapCallConv(conf, typ.callConv, call.info), cuint(call.len-1),
              mapType(conf, typ[0]), sig) != OK:
    globalError(conf, call.info, "error in FFI call")

  var args: ArgList
  let fn = cast[pointer](call[0].intVal)
  for i in 1..<call.len:
    var t = call[i].typ
    args[i-1] = alloc0(packSize(conf, call[i], t))
    pack(conf, call[i], t, args[i-1])
  let retVal = if isEmptyType(typ[0]): pointer(nil)
               else: alloc(getSize(conf, typ[0]).int)

  libffi.call(cif, fn, retVal, args)

  if retVal.isNil:
    result = newNode(nkEmpty)
  else:
    result = unpack(conf, retVal, typ[0], nil)
    result.info = call.info

  if retVal != nil: dealloc retVal
  for i in 1..<call.len:
    call[i] = unpack(conf, args[i-1], typ[i], call[i])
    dealloc args[i-1]

proc callForeignFunction*(conf: ConfigRef, fn: PNode, fntyp: PType,
                          args: var TNodeSeq, start, len: int,
                          info: TLineInfo): PNode =
  internalAssert conf, fn.kind == nkPtrLit

  var cif: TCif
  var sig: ParamList
  for i in 0..len-1:
    var aTyp = args[i+start].typ
    if aTyp.isNil:
      internalAssert conf, i+1 < fntyp.len
      aTyp = fntyp[i+1]
      args[i+start].typ = aTyp
    sig[i] = mapType(conf, aTyp)
    if sig[i].isNil: globalError(conf, info, "cannot map FFI type")

  if prep_cif(cif, mapCallConv(conf, fntyp.callConv, info), cuint(len),
              mapType(conf, fntyp[0]), sig) != OK:
    globalError(conf, info, "error in FFI call")

  var cargs: ArgList
  let fn = cast[pointer](fn.intVal)
  for i in 0..len-1:
    let t = args[i+start].typ
    cargs[i] = alloc0(packSize(conf, args[i+start], t))
    pack(conf, args[i+start], t, cargs[i])
  let retVal = if isEmptyType(fntyp[0]): pointer(nil)
               else: alloc(getSize(conf, fntyp[0]).int)

  libffi.call(cif, fn, retVal, cargs)

  if retVal.isNil:
    result = newNode(nkEmpty)
  else:
    result = unpack(conf, retVal, fntyp[0], nil)
    result.info = info

  if retVal != nil: dealloc retVal
  for i in 0..len-1:
    let t = args[i+start].typ
    args[i+start] = unpack(conf, cargs[i], t, args[i+start])
    dealloc cargs[i]