summary refs log tree commit diff stats
path: root/doc/help
Commit message (Collapse)AuthorAgeFilesLines
* added symlink: doc/help => ranger/helphut2010-02-281-0/+1
d='n29' href='#n29'>29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
=============
Nimrod Manual
=============

:Author: Andreas Rumpf
:Version: |nimrodversion|

.. contents::


About this document
===================

**Note**: This document is a draft! Several of Nimrod's features need more
precise wording. This manual will evolve into a proper specification some
day.

This document describes the lexis, the syntax, and the semantics of Nimrod.

The language constructs are explained using an extended BNF, in
which ``(a)*`` means 0 or more ``a``'s, ``a+`` means 1 or more ``a``'s, and
``(a)?`` means an optional *a*; an alternative spelling for optional parts is
``[a]``. The ``|`` symbol is used to mark alternatives
and has the lowest precedence. Parentheses may be used to group elements.
Non-terminals start with a lowercase letter, abstract terminal symbols are in
UPPERCASE. Verbatim terminal symbols (including keywords) are quoted
with ``'``. An example::

  ifStmt ::= 'if' expr ':' stmts ('elif' expr ':' stmts)* ['else' stmts]

Other parts of Nimrod - like scoping rules or runtime semantics are only
described in an informal manner. The reason is that formal semantics are
difficult to write and understand. However, there is only one Nimrod
implementation, so one may consider it as the formal specification;
especially since the compiler's code is pretty clean (well, some parts of it).


Definitions
===========

A Nimrod program specifies a computation that acts on a memory consisting of
components called `locations`:idx:. A variable is basically a name for a
location. Each variable and location is of a certain `type`:idx:. The
variable's type is called `static type`:idx:, the location's type is called
`dynamic type`:idx:. If the static type is not the same as the dynamic type,
it is a supertype of the dynamic type.

An `identifier`:idx: is a symbol declared as a name for a variable, type,
procedure, etc. The region of the program over which a declaration applies is
called the `scope`:idx: of the declaration. Scopes can be nested. The meaning
of an identifier is determined by the smallest enclosing scope in which the
identifier is declared.

An expression specifies a computation that produces a value or location.
Expressions that produce locations are called `l-values`:idx:. An l-value
can denote either a location or the value the location contains, depending on
the context. Expressions whose values can be determined statically are called
`constant expressions`:idx:; they are never l-values.

A `static error`:idx: is an error that the implementation detects before
program execution. Unless explicitly classified, an error is a static error.

A `checked runtime error`:idx: is an error that the implementation detects
and reports at runtime. The method for reporting such errors is via *raising
exceptions*. However, the implementation provides a means to disable these
runtime checks. See the section pragmas_ for details.

An `unchecked runtime error`:idx: is an error that is not guaranteed to be
detected, and can cause the subsequent behavior of the computation to
be arbitrary. Unchecked runtime errors cannot occur if only `safe`:idx:
language features are used.


Lexical Analysis
================

Encoding
--------

All Nimrod source files are in the UTF-8 encoding (or its ASCII subset). Other
encodings are not supported. Any of the standard platform line termination
sequences can be used - the Unix form using ASCII LF (linefeed), the Windows
form using the ASCII sequence CR LF (return followed by linefeed), or the old
Macintosh form using the ASCII CR (return) character. All of these forms can be
used equally, regardless of platform.


Indentation
-----------

Nimrod's standard grammar describes an `indentation sensitive`:idx: language.
This means that all the control structures are recognized by indentation.
Indentation consists only of spaces; tabulators are not allowed.

The terminals ``IND`` (indentation), ``DED`` (dedentation) and ``SAD``
(same indentation) are generated by the scanner, denoting an indentation.

These terminals are only generated for lines that are not empty.

The parser and the scanner communicate over a stack which indentation terminal
should be generated: The stack consists of integers counting the spaces. The
stack is initialized with a zero on its top. The scanner reads from the stack:
If the current indentation token consists of more spaces than the entry at the
top of the stack, a ``IND`` token is generated, else if it consists of the same
number of spaces, a ``SAD`` token is generated. If it consists of fewer spaces,
a ``DED`` token is generated for any item on the stack that is greater than the
current. These items are later popped from the stack by the parser. At the end
of the file, a ``DED`` token is generated for each number remaining on the
stack that is larger than zero.

Because the grammar contains some optional ``IND`` tokens, the scanner cannot
push new indentation levels. This has to be done by the parser. The symbol
``indPush`` indicates that an ``IND`` token is expected; the current number of
leading spaces is pushed onto the stack by the parser. The symbol ``indPop``
denotes that the parser pops an item from the indentation stack. No token is
consumed by ``indPop``.


Comments
--------

`Comments`:idx: start anywhere outside a string or character literal with the
hash character ``#``.
Comments consist of a concatenation of `comment pieces`:idx:. A comment piece
starts with ``#`` and runs until the end of the line. The end of line characters
belong to the piece. If the next line only consists of a comment piece which is
aligned to the preceding one, it does not start a new comment:

.. code-block:: nimrod

  i = 0     # This is a single comment over multiple lines belonging to the
            # assignment statement. The scanner merges these two pieces.
  # This is a new comment belonging to the current block, but to no particular
  # statement.
  i = i + 1 # This a new comment that is NOT
  echo(i)   # continued here, because this comment refers to the echo statement

Comments are tokens; they are only allowed at certain places in the input file
as they belong to the syntax tree! This feature enables perfect source-to-source
transformations (such as pretty-printing) and superior documentation generators.
A nice side-effect is that the human reader of the code always knows exactly
which code snippet the comment refers to.


Identifiers & Keywords
----------------------

`Identifiers`:idx: in Nimrod can be any string of letters, digits
and underscores, beginning with a letter. Two immediate following
underscores ``__`` are not allowed::

  letter ::= 'A'..'Z' | 'a'..'z' | '\x80'..'\xff'
  digit ::= '0'..'9'
  IDENTIFIER ::= letter ( ['_'] letter | digit )*

The following `keywords`:idx: are reserved and cannot be used as identifiers:

.. code-block:: nimrod
   :file: ../data/keywords.txt

Some keywords are unused; they are reserved for future developments of the
language.

Nimrod is a `style-insensitive`:idx: language. This means that it is not
case-sensitive and even underscores are ignored:
**type** is a reserved word, and so is **TYPE** or **T_Y_P_E**. The idea behind
this is that this allows programmers to use their own prefered spelling style
and libraries written by different programmers cannot use incompatible
conventions. A Nimrod-aware editor or IDE can show the identifiers as
preferred. Another advantage is that it frees the programmer from remembering 
the exact spelling of an identifier.


Literal strings
---------------

`Literal strings`:idx: can be delimited by matching double quotes, and can
contain the following `escape sequences`:idx:\ :

==================         ===================================================
  Escape sequence          Meaning
==================         ===================================================
  ``\n``                   `newline`:idx:
  ``\r``, ``\c``           `carriage return`:idx:
  ``\l``                   `line feed`:idx:
  ``\f``                   `form feed`:idx:
  ``\t``                   `tabulator`:idx:
  ``\v``                   `vertical tabulator`:idx:
  ``\\``                   `backslash`:idx:
  ``\"``                   `quotation mark`:idx:
  ``\'``                   `apostrophe`:idx:
  ``\d+``                  `character with decimal value d`:idx:;
                           all decimal digits directly
                           following are used for the character
  ``\a``                   `alert`:idx:
  ``\b``                   `backspace`:idx:
  ``\e``                   `escape`:idx: `[ESC]`:idx:
  ``\xHH``                 `character with hex value HH`:idx:;
                           exactly two hex digits are allowed
==================         ===================================================


Strings in Nimrod may contain any 8-bit value, except embedded zeros.

Literal strings can also be delimited by three double squotes
``"""`` ... ``"""``.
Literals in this form may run for several lines, may contain ``"`` and do not
interpret any escape sequences.
For convenience, when the opening ``"""`` is immediately followed by a newline, 
the newline is not included in the string.
There are also `raw string literals` that are preceded with the letter ``r``
(or ``R``) and are delimited by matching double quotes (just like ordinary
string literals) and do not interpret the escape sequences. This is especially
convenient for regular expressions or Windows paths:

.. code-block:: nimrod

  var f = openFile(r"C:\texts\text.txt") # a raw string, so ``\t`` is no tab


Literal characters
------------------

Character literals are enclosed in single quotes ``''`` and can contain the
same escape sequences as strings - with one exception: ``\n`` is not allowed
as it may be wider than one character (often it is the pair CR/LF for example).
A character is not an Unicode character but a single byte. The reason for this
is efficiency: For the overwhelming majority of use-cases, the resulting
programs will still handle UTF-8 properly as UTF-8 was specially designed for
this.
Another reason is that Nimrod can thus support ``array[char, int]`` or
``set[char]`` efficiently as many algorithms rely on this feature.


Numerical constants
-------------------

`Numerical constants`:idx: are of a single type and have the form::

  hexdigit ::= digit | 'A'..'F' | 'a'..'f'
  octdigit ::= '0'..'7'
  bindigit ::= '0'..'1'
  INT_LIT ::= digit ( ['_'] digit )*
            | '0' ('x' | 'X' ) hexdigit ( ['_'] hexdigit )*
            | '0o' octdigit ( ['_'] octdigit )*
            | '0' ('b' | 'B' ) bindigit ( ['_'] bindigit )*

  INT8_LIT ::= INT_LIT '\'' ('i' | 'I' ) '8'
  INT16_LIT ::= INT_LIT '\'' ('i' | 'I' ) '16'
  INT32_LIT ::= INT_LIT '\'' ('i' | 'I' ) '32'
  INT64_LIT ::= INT_LIT '\'' ('i' | 'I' ) '64'

  exponent ::= ('e' | 'E' ) ['+' | '-'] digit ( ['_'] digit )*
  FLOAT_LIT ::= digit (['_'] digit)*  ('.' (['_'] digit)* [exponent] |exponent)
  FLOAT32_LIT ::= ( FLOAT_LIT | INT_LIT ) '\'' ('f' | 'F') '32'
  FLOAT64_LIT ::= ( FLOAT_LIT | INT_LIT ) '\'' ('f' | 'F') '64'


As can be seen in the productions, numerical constants can contain unterscores
for readability. Integer and floating point literals may be given in decimal (no
prefix), binary (prefix ``0b``), octal (prefix ``0o``) and hexadecimal 
(prefix ``0x``) notation.

There exists a literal for each numerical type that is
defined. The suffix starting with an apostophe ('\'') is called a
`type suffix`:idx:. Literals without a type prefix are of the type ``int``,
unless the literal contains a dot or an ``E`` in which case it is of
type ``float``.

The type suffixes are:

=================    =========================
  Type Suffix        Resulting type of literal
=================    =========================
  ``'i8``            int8
  ``'i16``           int16
  ``'i32``           int32
  ``'i64``           int64
  ``'f32``           float32
  ``'f64``           float64
=================    =========================

Floating point literals may also be in binary, octal or hexadecimal
notation:
``0B0_10001110100_0000101001000111101011101111111011000101001101001001'f64``
is approximately 1.72826e35 according to the IEEE floating point standard.



Other tokens
------------

The following strings denote other tokens::

       (     )     {     }     [     ]     ,  ;   [.    .]  {.   .}  (.  .)
       :     =     ^     ..    `

`..`:tok: takes precedence over other tokens that contain a dot: `{..}`:tok: are
the three tokens `{`:tok:, `..`:tok:, `}`:tok: and not the two tokens
`{.`:tok:, `.}`:tok:.

In Nimrod one can define his own operators. An `operator`:idx: is any
combination of the following characters that is not listed above::

       +     -     *     /     <     >
       =     @     $     ~     &     %
       !     ?     ^     .     |     \

These keywords are also operators:
``and or not xor shl shr div mod in notin is isnot``.


Syntax
======

This section lists Nimrod's standard syntax in ENBF. How the parser receives
indentation tokens is already described in the Lexical Analysis section.

Nimrod allows user-definable operators.
Binary operators have 8 different levels of precedence. For user-defined
operators, the precedence depends on the first character the operator consists
of. All binary operators are left-associative.

================  ==============================================  ==================  ===============
Precedence level    Operators                                     First characters    Terminal symbol
================  ==============================================  ==================  ===============
  7 (highest)                                                     ``$``               OP7
  6               ``*    /    div   mod   shl  shr  %``           ``* % \  /``        OP6
  5               ``+    -``                                      ``+  ~  |``         OP5
  4               ``&``                                           ``&``               OP4
  3               ``==  <= < >= > !=  in  not_in  is  isnot``     ``= <  > !``        OP3
  2               ``and``                                                             OP2
  1               ``or xor``                                                          OP1
  0 (lowest)                                                      ``? @ ^ ` : .``     OP0
================  ==============================================  ==================  ===============


The grammar's start symbol is ``module``. The grammar is LL(1) and therefore
not ambigious.

.. include:: grammar.txt
   :literal:



Semantics
=========

Constants
---------

`Constants`:idx: are symbols which are bound to a value. The constant's value
cannot change. The compiler must be able to evaluate the expression in a
constant declaration at compile time.

Nimrod contains a sophisticated compile-time evaluator, so procedures which
have no side-effect can be used in constant expressions too:

.. code-block:: nimrod
  import strutils
  const 
    constEval = contains("abc", 'b') # computed at compile time!


Types
-----

All expressions have a `type`:idx: which is known at compile time. Nimrod
is statically typed. One can declare new types, which is in essence defining
an identifier that can be used to denote this custom type.

These are the major type classes:

* ordinal types (consist of integer, bool, character, enumeration
  (and subranges thereof) types)
* floating point types
* string type
* structured types
* reference (pointer) type
* procedural type
* generic type


Ordinal types
~~~~~~~~~~~~~
`Ordinal types`:idx: have the following characteristics:

- Ordinal types are countable and ordered. This property allows
  the operation of functions as ``Inc``, ``Ord``, ``Dec`` on ordinal types to
  be defined.
- Ordinal values have a smallest possible value. Trying to count further
  down than the smallest value gives a checked runtime or static error.
- Ordinal values have a largest possible value. Trying to count further
  than the largest value gives a checked runtime or static error.

Integers, bool, characters and enumeration types (and subrange of these
types) belong to ordinal types.


Pre-defined numerical types
~~~~~~~~~~~~~~~~~~~~~~~~~~~
These integer types are pre-defined:

``int``
  the generic signed integer type; its size is platform dependant
  (the compiler chooses the processor's fastest integer type)
  this type should be used in general. An integer literal that has no type
  suffix is of this type.

intXX
  additional signed integer types of XX bits use this naming scheme
  (example: int16 is a 16 bit wide integer).
  The current implementation supports ``int8``, ``int16``, ``int32``, ``int64``.
  Literals of these types have the suffix 'iXX.


There are no `unsigned integer`:idx: types, only `unsigned operations`:idx:
that treat their arguments as unsigned. Unsigned operations all wrap around;
they cannot lead to over- or underflow errors. Unsigned operations use the
``%`` suffix as convention:

======================   ======================================================
operation                meaning
======================   ======================================================
``a +% b``               unsigned integer addition
``a -% b``               unsigned integer substraction
``a *% b``               unsigned integer multiplication
``a /% b``               unsigned integer division
``a %% b``               unsigned integer modulo operation
``a <% b``               treat ``a`` and ``b`` as unsigned and compare
``a <=% b``              treat ``a`` and ``b`` as unsigned and compare
``ze(a)``                extends the bits of ``a`` with zeros until it has the
                         width of the ``int`` type
``toU8(a)``              treats ``a`` as unsigned and converts it to an
                         unsigned integer of 8 bits (but still the
                         ``int8`` type)
``toU16(a)``             treats ``a`` as unsigned and converts it to an
                         unsigned integer of 16 bits (but still the
                         ``int16`` type)
``toU32(a)``             treats ``a`` as unsigned and converts it to an
                         unsigned integer of 32 bits (but still the
                         ``int32`` type)
======================   ======================================================

The following floating point types are pre-defined:

``float``
  the generic floating point type; its size is platform dependant
  (the compiler chooses the processor's fastest floating point type)
  this type should be used in general

floatXX
  an implementation may define additional floating point types of XX bits using
  this naming scheme (example: float64 is a 64 bit wide float). The current
  implementation supports ``float32`` and ``float64``. Literals of these types
  have the suffix 'fXX.

`Automatic type conversion`:idx: is performed in expressions where different
kinds of integer types are used. However, if the type conversion
loses information, the `EOutOfRange`:idx: exception is raised (if the error
cannot be detected at compile time).

Automatic type conversion in expressions with different kinds
of floating point types is performed: The smaller type is
converted to the larger. Arithmetic performed on floating point types
follows the IEEE standard. Integer types are not converted to floating point
types automatically and vice versa.


Boolean type
~~~~~~~~~~~~
The `boolean`:idx: type is named ``bool`` in Nimrod and can be one of the two
pre-defined values ``true`` and ``false``. Conditions in while,
if, elif, when statements need to be of type bool.

This condition holds::

  ord(false) == 0 and ord(true) == 1

The operators ``not, and, or, xor, <, <=, >, >=, !=, ==`` are defined
for the bool type. The ``and`` and ``or`` operators perform short-cut
evaluation. Example:

.. code-block:: nimrod

  while p != nil and p.name != "xyz":
    # p.name is not evaluated if p == nil
    p = p.next


The size of the bool type is one byte.


Character type
~~~~~~~~~~~~~~
The `character type`:idx: is named ``char`` in Nimrod. Its size is one byte.
Thus it cannot represent an UTF-8 character, but a part of it.
The reason for this is efficiency: For the overwhelming majority of use-cases,
the resulting programs will still handle UTF-8 properly as UTF-8 was specially
designed for this.
Another reason is that Nimrod can support ``array[char, int]`` or
``set[char]`` efficiently as many algorithms rely on this feature. The
`TRune` type is used for Unicode characters, it can represent any Unicode
character. ``TRune`` is declared the ``unicode`` module.



Enumeration types
~~~~~~~~~~~~~~~~~
`Enumeration`:idx: types define a new type whose values consist of the ones
specified. The values are ordered. Example:

.. code-block:: nimrod

  type
    TDirection = enum
      north, east, south, west


Now the following holds::

  ord(north) == 0
  ord(east) == 1
  ord(south) == 2
  ord(west) == 3

Thus, north < east < south < west. The comparison operators can be used
with enumeration types.

For better interfacing to other programming languages, the fields of enum
types can be assigned an explicit ordinal value. However, the ordinal values
have to be in ascending order. A field whose ordinal value is not
explicitly given is assigned the value of the previous field + 1.

An explicit ordered enum can have *wholes*:

.. code-block:: nimrod
  type
    TTokenType = enum
      a = 2, b = 4, c = 89 # wholes are valid

However, it is then not an ordinal anymore, so it is not possible to use these
enums as an index type for arrays. The procedures ``inc``, ``dec``, ``succ``
and ``pred`` are not available for them either.


Subrange types
~~~~~~~~~~~~~~
A `subrange`:idx: type is a range of values from an ordinal type (the base
type). To define a subrange type, one must specify it's limiting values: the
highest and lowest value of the type:

.. code-block:: nimrod
  type
    TSubrange = range[0..5]


``TSubrange`` is a subrange of an integer which can only hold the values 0
to 5. Assigning any other value to a variable of type ``TSubrange`` is a
checked runtime error (or static error if it can be statically
determined). Assignments from the base type to one of its subrange types
(and vice versa) are allowed.

A subrange type has the same size as its base type (``int`` in the example).


String type
~~~~~~~~~~~
All string literals are of the type `string`:idx:. A string in Nimrod is very
similar to a sequence of characters. However, strings in Nimrod are both
zero-terminated and have a length field. One can retrieve the length with the
builtin ``len`` procedure; the length never counts the terminating zero.
The assignment operator for strings always copies the string.

Strings are compared by their lexicographical order. All comparison operators
are available. Strings can be indexed like arrays (lower bound is 0). Unlike
arrays, they can be used in case statements:

.. code-block:: nimrod

  case paramStr(i)
  of "-v": incl(options, optVerbose)
  of "-h", "-?": incl(options, optHelp)
  else: write(stdout, "invalid command line option!\n")

Per convention, all strings are UTF-8 strings, but this is not enforced. For
example, when reading strings from binary files, they are merely a sequence of
bytes. The index operation ``s[i]`` means the i-th *char* of ``s``, not the
i-th *unichar*. The iterator ``runes`` from the ``unicode``
module can be used for iteration over all unicode characters.


Structured types
~~~~~~~~~~~~~~~~
A variable of a `structured type`:idx: can hold multiple values at the same
time. Stuctured types can be nested to unlimited levels. Arrays, sequences,
tuples, objects and sets belong to the structured types.

Array and sequence types
~~~~~~~~~~~~~~~~~~~~~~~~
`Arrays`:idx: are a homogenous type, meaning that each element in the array
has the same type. Arrays always have a fixed length which is specified at
compile time (except for open arrays). They can be indexed by any ordinal type.
A parameter ``A`` may be an *open array*, in which case it is indexed by
integers from 0 to ``len(A)-1``. An array expression may be constructed by the
array constructor ``[]``.

`Sequences`:idx: are similar to arrays but of dynamic length which may change
during runtime (like strings). A sequence ``S`` is always indexed by integers
from 0 to ``len(S)-1`` and its bounds are checked. Sequences can be
constructed by the array constructor ``[]`` in conjunction with the array to
sequence operator ``@``. Another way to allocate space for a sequence is to
call the built-in ``newSeq`` procedure.

A sequence may be passed to a parameter that is of type *open array*.

Example:

.. code-block:: nimrod

  type
    TIntArray = array[0..5, int] # an array that is indexed with 0..5
    TIntSeq = seq[int] # a sequence of integers
  var
    x: TIntArray
    y: TIntSeq
  x = [1, 2, 3, 4, 5, 6]  # [] this is the array constructor
  y = @[1, 2, 3, 4, 5, 6] # the @ turns the array into a sequence

The lower bound of an array or sequence may be received by the built-in proc
``low()``, the higher bound by ``high()``. The length may be
received by ``len()``. ``low()`` for a sequence or an open array always returns
0, as this is the first valid index.

The notation ``x[i]`` can be used to access the i-th element of ``x``.

Arrays are always bounds checked (at compile-time or at runtime). These
checks can be disabled via pragmas or invoking the compiler with the
``--bound_checks:off`` command line switch.

An open array is  also a means to implement passing a variable number of
arguments to a procedure. The compiler converts the list of arguments
to an array automatically:

.. code-block:: nimrod
  proc myWriteln(f: TFile, a: openarray[string]) =
    for s in items(a):
      write(f, s)
    write(f, "\n")

  myWriteln(stdout, "abc", "def", "xyz")
  # is transformed by the compiler to:
  myWriteln(stdout, ["abc", "def", "xyz"])

This transformation is only done if the openarray parameter is the
last parameter in the procedure header. The current implementation does not
support nested open arrays.


Tuples and object types
~~~~~~~~~~~~~~~~~~~~~~~
A variable of a `tuple`:idx: or `object`:idx: type is a heterogenous storage
container.
A tuple or object defines various named *fields* of a type. A tuple also
defines an *order* of the fields. Tuples are meant for heterogenous storage
types with no overhead and few abstraction possibilities. The constructor ``()``
can be used to construct tuples. The order of the fields in the constructor
must match the order of the tuple's definition. Different tuple-types are
*equivalent* if they specify the same fields of the same type in the same
order.

The assignment operator for tuples copies each component.
The default assignment operator for objects copies each component. Overloading
of the assignment operator for objects is not possible, but this may change in
future versions of the compiler.

.. code-block:: nimrod

  type
    TPerson = tuple[name: string, age: int] # type representing a person
                                            # a person consists of a name
                                            # and an age
  var
    person: TPerson
  person = (name: "Peter", age: 30)
  # the same, but less readable:
  person = ("Peter", 30)

The implementation aligns the fields for best access performance. The alignment
is compatible with the way the C compiler does it.

Objects provide many features that tuples do not. Object provide inheritance
and information hiding. Objects have access to their type at runtime, so that
the ``is`` operator can be used to determine the object's type.

.. code-block:: nimrod

  type
    TPerson = object
      name*: string   # the * means that `name` is accessible from other modules
      age: int        # no * means that the field is hidden

    TStudent = object of TPerson # a student is a person
      id: int                    # with an id field

  var
    student: TStudent
    person: TPerson
  assert(student is TStudent) # is true

Object fields that should be visible from outside the defining module, have to
marked by ``*``. In contrast to tuples, different object types are
never *equivalent*.


Object variants
~~~~~~~~~~~~~~~
Often an object hierarchy is overkill in certain situations where simple
`variant`:idx: types are needed.

An example:

.. code-block:: nimrod

  # This is an example how an abstract syntax tree could be modelled in Nimrod
  type
    TNodeKind = enum  # the different node types
      nkInt,          # a leaf with an integer value
      nkFloat,        # a leaf with a float value
      nkString,       # a leaf with a string value
      nkAdd,          # an addition
      nkSub,          # a subtraction
      nkIf            # an if statement
    PNode = ref TNode
    TNode = object
      case kind: TNodeKind  # the ``kind`` field is the discriminator
      of nkInt: intVal: int
      of nkFloat: floavVal: float
      of nkString: strVal: string
      of nkAdd, nkSub:
        leftOp, rightOp: PNode
      of nkIf:
        condition, thenPart, elsePart: PNode

  var
    n: PNode
  new(n)  # creates a new node
  n.kind = nkFloat
  n.floatVal = 0.0 # valid, because ``n.kind==nkFloat``, so that it fits

  # the following statement raises an `EInvalidField` exception, because
  # n.kind's value does not fit:
  n.strVal = ""

As can been seen from the example, an advantage to an object hierarchy is that
no casting between different object types is needed. Yet, access to invalid
object fields raises an exception.


Set type
~~~~~~~~
The `set type`:idx: models the mathematical notion of a set. The set's
basetype can only be an ordinal type. The reason is that sets are implemented
as high performance bit vectors.

Sets can be constructed via the set constructor: ``{}`` is the empty set. The
empty set is type combatible with any special set type. The constructor
can also be used to include elements (and ranges of elements) in the set:

.. code-block:: nimrod

  {'a'..'z', '0'..'9'} # This constructs a set that conains the
                       # letters from 'a' to 'z' and the digits
                       # from '0' to '9'

These operations are supported by sets:

==================    ========================================================
operation             meaning
==================    ========================================================
``A + B``             union of two sets
``A * B``             intersection of two sets
``A - B``             difference of two sets (A without B's elements)
``A == B``            set equality
``A <= B``            subset relation (A is subset of B or equal to B)
``A < B``             strong subset relation (A is a real subset of B)
``e in A``            set membership (A contains element e)
``A -+- B``           symmetric set difference (= (A - B) + (B - A))
``card(A)``           the cardinality of A (number of elements in A)
``incl(A, elem)``     same as A = A + {elem}
``excl(A, elem)``     same as A = A - {elem}
==================    ========================================================


Reference and pointer types
~~~~~~~~~~~~~~~~~~~~~~~~~~~
References (similiar to `pointers`:idx: in other programming languages) are a
way to introduce many-to-one relationships. This means different references can
point to and modify the same location in memory.

Nimrod distinguishes between `traced`:idx: and `untraced`:idx: references.
Untraced references are also called *pointers*. Traced references point to
objects of a garbage collected heap, untraced references point to
manually allocated objects or to objects somewhere else in memory. Thus
untraced references are *unsafe*. However for certain low-level operations
(accessing the hardware) untraced references are unavoidable.

Traced references are declared with the **ref** keyword, untraced references
are declared with the **ptr** keyword.

The ``^`` operator can be used to derefer a reference, the ``addr`` procedure
returns the address of an item. An address is always an untraced reference.
Thus the usage of ``addr`` is an *unsafe* feature.

The ``.`` (access a tuple/object field operator)
and ``[]`` (array/string/sequence index operator) operators perform implicit
dereferencing operations for reference types:

.. code-block:: nimrod

  type
    PNode = ref TNode
    TNode = object
      le, ri: PNode
      data: int

  var
    n: PNode
  new(n)
  n.data = 9 # no need to write n^ .data

To allocate a new traced object, the built-in procedure ``new`` has to be used.
To deal with untraced memory, the procedures ``alloc``, ``dealloc`` and
``realloc`` can be used. The documentation of the system module contains
further information.

If a reference points to *nothing*, it has the value ``nil``.

Special care has to be taken if an untraced object contains traced objects like
traced references, strings or sequences: In order to free everything properly,
the built-in procedure ``GCunref`` has to be called before freeing the
untraced memory manually!

.. XXX finalizers for traced objects

Procedural type
~~~~~~~~~~~~~~~
A `procedural type`:idx: is internally a pointer to a procedure. ``nil`` is
an allowed value for variables of a procedural type. Nimrod uses procedural
types to achieve `functional`:idx: programming techniques. Dynamic dispatch
for OOP constructs can also be implemented with procedural types.

Example:

.. code-block:: nimrod

  type
    TCallback = proc (x: int) {.cdecl.}

  proc printItem(x: Int) = ...

  proc forEach(c: TCallback) =
    ...

  forEach(printItem)  # this will NOT work because calling conventions differ

A subtle issue with procedural types is that the calling convention of the
procedure influences the type compability: Procedural types are only compatible
if they have the same calling convention.

Nimrod supports these `calling conventions`:idx:, which are all incompatible to
each other:

`stdcall`:idx:
    This the stdcall convention as specified by Microsoft. The generated C
    procedure is declared with the ``__stdcall`` keyword.

`cdecl`:idx:
    The cdecl convention means that a procedure shall use the same convention
    as the C compiler. Under windows the generated C procedure is declared with
    the ``__cdecl`` keyword.

`safecall`:idx:
    This is the safecall convention as specified by Microsoft. The generated C
    procedure is declared with the ``__safecall`` keyword. The word *safe*
    refers to the fact that all hardware registers shall be pushed to the
    hardware stack.

`inline`:idx:
    The inline convention means the the caller should not call the procedure,
    but inline its code directly. Note that Nimrod does not inline, but leaves
    this to the C compiler. Thus it generates ``__inline`` procedures. This is
    only a hint for the compiler: It may completely ignore it and
    it may inline procedures that are not marked as ``inline``.

`fastcall`:idx:
    Fastcall means different things to different C compilers. One gets whatever
    the C ``__fastcall`` means.

`nimcall`:idx:
    Nimcall is the default convention used for Nimrod procedures. It is the
    same as ``fastcall``, but only for C compilers that support ``fastcall``.

`closure`:idx:
    indicates that the procedure expects a context, a closure that needs
    to be passed to the procedure. The implementation is the
    same as ``cdecl``, but with a hidden pointer parameter (the
    *closure*). The hidden parameter is always the last one.

`syscall`:idx:
    The syscall convention is the same as ``__syscall`` in C. It is used for
    interrupts.

`noconv`:idx:
    The generated C code will not have any explicit calling convention and thus
    use the C compiler's default calling convention. This is needed because
    Nimrod's default calling convention for procedures is ``fastcall`` to
    improve speed. This is unlikely to be needed by the user.

Most calling conventions exist only for the Windows 32-bit platform.



Statements and expressions
--------------------------
Nimrod uses the common statement/expression paradigm: `Statements`:idx: do not
produce a value in contrast to expressions. Call expressions are statements.
If the called procedure returns a value, it is not a valid statement
as statements do not produce values. To evaluate an expression for
side-effects and throwing its value away, one can use the ``discard``
statement.

Statements are separated into `simple statements`:idx: and
`complex statements`:idx:.
Simple statements are statements that cannot contain other statements like
assignments, calls or the ``return`` statement; complex statements can
contain other statements. To avoid the `dangling else problem`:idx:, complex
statements always have to be intended::

  simpleStmt ::= returnStmt
             | yieldStmt
             | discardStmt
             | raiseStmt
             | breakStmt
             | continueStmt
             | pragma
             | importStmt
             | fromStmt
             | includeStmt
             | exprStmt
  complexStmt ::= ifStmt | whileStmt | caseStmt | tryStmt | forStmt
                   | blockStmt | asmStmt
                   | procDecl | iteratorDecl | macroDecl | templateDecl
                   | constSection | typeSection | whenStmt | varSection



Discard statement
~~~~~~~~~~~~~~~~~

Syntax::

  discardStmt ::= 'discard' expr

Example:

.. code-block:: nimrod

  discard proc_call("arg1", "arg2") # discard the return value of `proc_call`

The `discard`:idx: statement evaluates its expression for side-effects and
throws the expression's resulting value away. If the expression has no
side-effects, this generates a static error. Ignoring the return value of a
procedure without using a discard statement is not allowed.


Var statement
~~~~~~~~~~~~~

Syntax::

  colonOrEquals ::= ':' typeDesc ['=' expr] | '=' expr
  varField ::= symbol ['*'] [pragma]
  varPart ::= symbol (comma symbol)* [comma] colonOrEquals [COMMENT | IND COMMENT]
  varSection ::= 'var' (varPart
                     | indPush (COMMENT|varPart)
                       (SAD (COMMENT|varPart))* DED indPop)


`Var`:idx: statements declare new local and global variables and
initialize them. A comma seperated list of variables can be used to specify
variables of the same type:

.. code-block:: nimrod

  var
    a: int = 0
    x, y, z: int

If an initializer is given the type can be omitted: The variable is of the
same type as the initializing expression. Variables are always initialized
with a default value if there is no initializing expression. The default
value depends on the type and is always a zero in binary.

============================    ==============================================
Type                            default value
============================    ==============================================
any integer type                0
any float                       0.0
char                            '\0'
bool                            false
ref or pointer type             nil
procedural type                 nil
sequence                        nil (**not** ``@[]``)
string                          nil (**not** "")
tuple[x: A, y: B, ...]          (default(A), default(B), ...)
                                (analogous for objects)
array[0..., T]                  [default(T), ...]
range[T]                        default(T); this may be out of the valid range
T = enum                        cast[T](0); this may be an invalid value
============================    ==============================================


Const section
~~~~~~~~~~~~~

Syntax::

  colonAndEquals ::= [':' typeDesc] '=' expr

  constDecl ::= symbol ['*'] [pragma] colonAndEquals [COMMENT | IND COMMENT]
              | COMMENT
  constSection ::= 'const' indPush constDecl (SAD constDecl)* DED indPop


Example:

.. code-block:: nimrod

  const
    MyFilename = "/home/my/file.txt"
    debugMode: bool = false

The `const`:idx: section declares symbolic constants. A symbolic constant is
a name for a constant expression. Symbolic constants only allow read-access.


If statement
~~~~~~~~~~~~

Syntax::

  ifStmt ::= 'if' expr ':' stmt ('elif' expr ':' stmt)* ['else' ':' stmt]

Example:

.. code-block:: nimrod

  var name = readLine(stdin)

  if name == "Andreas":
    echo("What a nice name!")
  elif name == "":
    echo("Don't you have a name?")
  else:
    echo("Boring name...")

The `if`:idx: statement is a simple way to make a branch in the control flow:
The expression after the keyword ``if`` is evaluated, if it is true
the corresponding statements after the ``:`` are executed. Otherwise
the expression after the ``elif`` is evaluated (if there is an
``elif`` branch), if it is true the corresponding statements after
the ``:`` are executed. This goes on until the last ``elif``. If all
conditions fail, the ``else`` part is executed. If there is no ``else``
part, execution continues with the statement after the ``if`` statement.


Case statement
~~~~~~~~~~~~~~

Syntax::

  caseStmt ::= 'case' expr ('of' sliceExprList ':' stmt)*
                           ('elif' expr ':' stmt)*
                           ['else' ':' stmt]

Example:

.. code-block:: nimrod

  case readline(stdin)
  of "delete-everything", "restart-computer":
    echo("permission denied")
  of "go-for-a-walk":     echo("please yourself")
  else:                   echo("unknown command")

The `case`:idx: statement is similar to the if statement, but it represents
a multi-branch selection. The expression after the keyword ``case`` is
evaluated and if its value is in a *vallist* the corresponding statements
(after the ``of`` keyword) are executed. If the value is not in any
given *slicelist* the ``else`` part is executed. If there is no ``else``
part and not all possible values that ``expr`` can hold occur in a ``vallist``,
a static error is given. This holds only for expressions of ordinal types.
If the expression is not of an ordinal type, and no ``else`` part is
given, control just passes after the ``case`` statement.

To suppress the static error in the ordinal case the programmer needs
to write an ``else`` part with a ``nil`` statement.


When statement
~~~~~~~~~~~~~~

Syntax::

  whenStmt ::= 'when' expr ':' stmt ('elif' expr ':' stmt)* ['else' ':' stmt]

Example:

.. code-block:: nimrod

  when sizeof(int) == 2:
    echo("running on a 16 bit system!")
  elif sizeof(int) == 4:
    echo("running on a 32 bit system!")
  elif sizeof(int) == 8:
    echo("running on a 64 bit system!")
  else:
    echo("cannot happen!")

The `when`:idx: statement is almost identical to the ``if`` statement with some
exceptions:

* Each ``expr`` has to be a constant expression (of type ``bool``).
* The statements do not open a new scope if they introduce new identifiers.
* The statements that belong to the expression that evaluated to true are
  translated by the compiler, the other statements are not checked for
  semantics! However, each ``expr`` is checked for semantics.

The ``when`` statement enables conditional compilation techniques. As
a special syntatic extension, the ``when`` construct is also available
within ``object`` definitions.


Raise statement
~~~~~~~~~~~~~~~

Syntax::

  raiseStmt ::= 'raise' [expr]

Example:

.. code-block:: nimrod
  raise newEOS("operating system failed")

Apart from built-in operations like array indexing, memory allocation, etc.
the ``raise`` statement is the only way to raise an exception.

.. XXX document this better!

If no exception name is given, the current exception is `re-raised`:idx:. The
`ENoExceptionToReraise`:idx: exception is raised if there is no exception to
re-raise. It follows that the ``raise`` statement *always* raises an
exception.


Try statement
~~~~~~~~~~~~~

Syntax::

  qualifiedIdent ::= symbol ['.' symbol]
  exceptList ::= [qualifiedIdent (comma qualifiedIdent)* [comma]]
  tryStmt ::= 'try' ':' stmt
             ('except' exceptList ':' stmt)*
             ['finally' ':' stmt]

Example:

.. code-block:: nimrod
  # read the first two lines of a text file that should contain numbers
  # and tries to add them
  var
    f: TFile
  if openFile(f, "numbers.txt"):
    try:
      var a = readLine(f)
      var b = readLine(f)
      echo("sum: " & $(parseInt(a) + parseInt(b)))
    except EOverflow:
      echo("overflow!")
    except EInvalidValue:
      echo("could not convert string to integer")
    except EIO:
      echo("IO error!")
    except:
      echo("Unknown exception!")
    finally:
      closeFile(f)

The statements after the `try`:idx: are executed in sequential order unless
an exception ``e`` is raised. If the exception type of ``e`` matches any
of the list ``exceptlist`` the corresponding statements are executed.
The statements following the ``except`` clauses are called
`exception handlers`:idx:.

The empty `except`:idx: clause is executed if there is an exception that is
in no list. It is similiar to an ``else`` clause in ``if`` statements.

If there is a `finally`:idx: clause, it is always executed after the
exception handlers.

The exception is *consumed* in an exception handler. However, an
exception handler may raise another exception. If the exception is not
handled, it is propagated through the call stack. This means that often
the rest of the procedure - that is not within a ``finally`` clause -
is not executed (if an exception occurs).


Return statement
~~~~~~~~~~~~~~~~

Syntax::

  returnStmt ::= 'return' [expr]

Example:

.. code-block:: nimrod
  return 40+2

The `return`:idx: statement ends the execution of the current procedure.
It is only allowed in procedures. If there is an ``expr``, this is syntactic
sugar for:

.. code-block:: nimrod
  result = expr
  return result

``return`` without an expression is a short notation for ``return result`` if
the proc has a return type. The `result`:idx: variable is always the return
value of the procedure. It is automatically declared by the compiler. As all
variables, ``result`` is initialized to (binary) zero::

.. code-block:: nimrod
    proc returnZero(): int =
      # implicitely returns 0


Yield statement
~~~~~~~~~~~~~~~

Syntax::

  yieldStmt ::= 'yield' expr

Example:

.. code-block:: nimrod
  yield (1, 2, 3)

The `yield`:idx: statement is used instead of the ``return`` statement in
iterators. It is only valid in iterators. Execution is returned to the body
of the for loop that called the iterator. Yield does not end the iteration
process, but execution is passed back to the iterator if the next iteration
starts. See the section about iterators (`Iterators and the for statement`_)
for further information.


Block statement
~~~~~~~~~~~~~~~

Syntax::

  blockStmt ::= 'block' [symbol] ':' stmt

Example:

.. code-block:: nimrod
  var found = false
  block myblock:
    for i in 0..3:
      for j in 0..3:
        if a[j][i] == 7:
          found = true
          break myblock # leave the block, in this case both for-loops
  echo(found)

The block statement is a means to group statements to a (named) `block`:idx:.
Inside the block, the ``break`` statement is allowed to leave the block
immediately. A ``break`` statement can contain a name of a surrounding
block to specify which block is to leave.


Break statement
~~~~~~~~~~~~~~~

Syntax::

  breakStmt ::= 'break' [symbol]

Example:

.. code-block:: nimrod
  break

The `break`:idx: statement is used to leave a block immediately. If ``symbol``
is given, it is the name of the enclosing block that is to leave. If it is
absent, the innermost block is left.


While statement
~~~~~~~~~~~~~~~

Syntax::

  whileStmt ::= 'while' expr ':' stmt

Example:

.. code-block:: nimrod
  echo("Please tell me your password: \n")
  var pw = readLine(stdin)
  while pw != "12345":
    echo("Wrong password! Next try: \n")
    pw = readLine(stdin)


The `while`:idx: statement is executed until the ``expr`` evaluates to false.
Endless loops are no error. ``while`` statements open an `implicit block`,
so that they can be leaved with a ``break`` statement.


Continue statement
~~~~~~~~~~~~~~~~~~

Syntax::

  continueStmt ::= 'continue'

A `continue`:idx: statement leads to the immediate next iteration of the
surrounding loop construct. It is only allowed within a loop. A continue
statement is syntactic sugar for a nested block:

.. code-block:: nimrod
  while expr1:
    stmt1
    continue
    stmt2

  # is equivalent to:
  while expr1:
    block myBlockName:
      stmt1
      break myBlockName
      stmt2


Assembler statement
~~~~~~~~~~~~~~~~~~~
Syntax::

  asmStmt ::= 'asm' [pragma] (STR_LIT | RSTR_LIT | TRIPLESTR_LIT)

The direct embedding of `assembler`:idx: code into Nimrod code is supported
by the unsafe ``asm`` statement. Identifiers in the assembler code that refer to
Nimrod identifiers shall be enclosed in a special character which can be
specified in the statement's pragmas. The default special character is ``'`'``.


If expression
~~~~~~~~~~~~~

An `if expression` is almost like an if statement, but it is an expression.
Example:

.. code-block:: nimrod
  p(if x > 8: 9 else: 10)

An if expression always results in a value, so the ``else`` part is
required. ``Elif`` parts are also allowed (but unlikely to be good
style).


Type convertions
~~~~~~~~~~~~~~~~
Syntactically a `type conversion` is like a procedure call, but a
type name replaces the procedure name. A type conversion is always
safe in the sense that a failure to convert a type to another
results in an exception (if it cannot be determined statically).


Type casts
~~~~~~~~~~
Example:

.. code-block:: nimrod
  cast[int](x)

Type casts are a crude mechanism to interpret the bit pattern of
an expression as if it would be of another type. Type casts are
only needed for low-level programming and are inherently unsafe.


The addr operator
~~~~~~~~~~~~~~~~~
The `addr` operator returns the address of an l-value. If the
type of the location is ``T``, the `addr` operator result is
of the type ``ptr T``. Taking the address of an object that resides
on the stack is **unsafe**, as the pointer may live longer than the
object on the stack and can thus reference a non-existing object.


Procedures
~~~~~~~~~~
What most programming languages call `methods`:idx: or `funtions`:idx: are
called `procedures`:idx: in Nimrod (which is the correct terminology). A
procedure declaration defines an identifier and associates it with a block
of code. A procedure may call itself recursively. The syntax is::

  param ::= symbol (comma symbol)* [comma] ':' typeDesc
  paramList ::= ['(' [param (comma param)* [comma]] ')'] [':' typeDesc]

  genericParam ::= symbol [':' typeDesc]
  genericParams ::= '[' genericParam (comma genericParam)* [comma] ']'

  procDecl ::= 'proc' symbol ['*'] [genericParams] paramList [pragma]
               ['=' stmt]

If the ``= stmt`` part is missing, it is a `forward`:idx: declaration. If
the proc returns a value, the procedure body can access an implicit declared
variable named `result`:idx: that represents the return value. Procs can be
overloaded. The overloading resolution algorithm tries to find the proc that is
the best match for the arguments. A parameter may be given a default value that
is used if the caller does not provide a value for this parameter. Example:

.. code-block:: nimrod

  proc toLower(c: Char): Char = # toLower for characters
    if c in {'A'..'Z'}:
      result = chr(ord(c) + (ord('a') - ord('A')))
    else:
      result = c

  proc toLower(s: string): string = # toLower for strings
    result = newString(len(s))
    for i in 0..len(s) - 1:
      result[i] = toLower(s[i]) # calls toLower for characters; no recursion!

Calling a procedure can be done in many different ways:

.. code-block:: nimrod
  proc callme(x, y: int, s: string = "", c: char, b: bool = false) = ...

  # call with positional arguments # parameter bindings:
  callme(0, 1, "abc", '\t', true)  # (x=0, y=1, s="abc", c='\t', b=true)
  # call with named and positional arguments:
  callme(y=1, x=0, "abd", '\t')    # (x=0, y=1, s="abd", c='\t', b=false)
  # call with named arguments (order is not relevant):
  callme(c='\t', y=1, x=0)         # (x=0, y=1, s="", c='\t', b=false)
  # call as a command statement: no () needed:
  callme 0, 1, "abc", '\t'


A procedure cannot modify its parameters (unless the parameters have the
type `var`).

`Operators`:idx: are procedures with a special operator symbol as identifier:

.. code-block:: nimrod
  proc `$` (x: int): string =
    # converts an integer to a string; this is a prefix operator.
    return intToStr(x)

Operators with one parameter are prefix operators, operators with two
parameters are infix operators. There is no way to declare postfix
operators: All postfix operators are built-in and handled by the
grammar explicitely.

Any operator can be called like an ordinary proc with the '`opr`'
notation. (Thus an operator can have more than two parameters):

.. code-block:: nimrod
  proc `*+` (a, b, c: int): int =
    # Multiply and add
    return a * b + c

  assert `*+`(3, 4, 6) == `*`(a, `+`(b, c))



Var parameters
~~~~~~~~~~~~~~
The type of a parameter may be prefixed with the ``var`` keyword:

.. code-block:: nimrod
  proc divmod(a, b: int, res, remainder: var int) =
    res = a div b
    remainder = a mod b

  var
    x, y: int

  divmod(8, 5, x, y) # modifies x and y
  assert x == 1
  assert y == 3

In the example, ``res`` and ``remainder`` are `var parameters`.
Var parameters can be modified by the procedure and the changes are
visible to the caller. The argument passed to a var parameter has to be
an l-value. Var parameters are implemented as hidden pointers. The
above example is equivalent to:

.. code-block:: nimrod
  proc divmod(a, b: int, res, remainder: ptr int) =
    res = a div b
    remainder = a mod b

  var
    x, y: int
  divmod(8, 5, addr(x), addr(y))
  assert x == 1
  assert y == 3

In the examples, var parameters or pointers are used to provide two
return values. This can be done in a cleaner way by returning a tuple:

.. code-block:: nimrod
  proc divmod(a, b: int): tuple[res, remainder: int] =
    return (a div b, a mod b)

  var t = divmod(8, 5)
  assert t.res == 1
  assert t.remainder = 3

Even more elegant is to use `tuple unpacking` to access the tuple's fields:

.. code-block:: nimrod
  var (x, y) = divmod(8, 5) # tuple unpacking
  assert x == 1
  assert y == 3

Unfortunately, this form of tuple unpacking is not yet implemented.

..
  XXX remove this as soon as tuple unpacking is implemented



Iterators and the for statement
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Syntax::

  forStmt ::= 'for' symbol (comma symbol)* [comma] 'in' expr ['..' expr] ':' stmt

  param ::= symbol (comma symbol)* [comma] ':' typeDesc
  paramList ::= ['(' [param (comma param)* [comma]] ')'] [':' typeDesc]

  genericParam ::= symbol [':' typeDesc]
  genericParams ::= '[' genericParam (comma genericParam)* [comma] ']'

  iteratorDecl ::= 'iterator' symbol ['*'] [genericParams] paramList [pragma]
               ['=' stmt]

The `for`:idx: statement is an abstract mechanism to iterate over the elements
of a container. It relies on an `iterator`:idx: to do so. Like ``while``
statements, ``for`` statements open an `implicit block`:idx:, so that they
can be leaved with a ``break`` statement. The ``for`` loop declares
iteration variables (``x`` in the example) - their scope reaches until the
end of the loop body. The iteration variables' types are inferred by the
return type of the iterator.

An iterator is similar to a procedure, except that it is always called in the
context of a ``for`` loop. Iterators provide a way to specify the iteration over
an abstract type. A key role in the execution of a ``for`` loop plays the
``yield`` statement in the called iterator. Whenever a ``yield`` statement is
reached the data is bound to the ``for`` loop variables and control continues
in the body of the ``for`` loop. The iterator's local variables and execution
state are automatically saved between calls. Example:

.. code-block:: nimrod
  # this definition exists in the system module
  iterator items*(a: string): char {.inline.} =
    var i = 0
    while i < len(a):
      yield a[i]
      inc(i)

  for ch in items("hello world"): # `ch` is an iteration variable
    echo(ch)

The compiler generates code as if the programmer would have written this:

.. code-block:: nimrod
  var i = 0
  while i < len(a):
    var ch = a[i]
    echo(ch)
    inc(i)

The current implementation always inlines the iterator code leading to zero
overhead for the abstraction. But this may increase the code size. Later
versions of the compiler will only inline iterators which have the calling
convention ``inline``.

If the iterator yields a tuple, there have to be as many iteration variables
as there are components in the tuple. The i'th iteration variable's type is
the one of the i'th component.


Type sections
~~~~~~~~~~~~~

Syntax::

  typeDef ::= typeDesc | objectDef | enumDef

  genericParam ::= symbol [':' typeDesc]
  genericParams ::= '[' genericParam (comma genericParam)* [comma] ']'

  typeDecl ::= COMMENT
             | symbol ['*'] [genericParams] ['=' typeDef] [COMMENT|IND COMMENT]

  typeSection ::= 'type' indPush typeDecl (SAD typeDecl)* DED indPop


Example:

.. code-block:: nimrod
  type # example demonstrates mutually recursive types
    PNode = ref TNode # a traced pointer to a TNode
    TNode = object
      le, ri: PNode   # left and right subtrees
      sym: ref TSym   # leaves contain a reference to a TSym

    TSym = object     # a symbol
      name: string    # the symbol's name
      line: int       # the line the symbol was declared in
      code: PNode     # the symbol's abstract syntax tree

A `type`:idx: section begins with the ``type`` keyword. It contains multiple
type definitions. A type definition binds a type to a name. Type definitions
can be recursive or even mutually recursive. Mutually recursive types are only
possible within a single ``type`` section.


Generics
~~~~~~~~

`Version 0.7.4: Complex generic types like in the example do not work.`:red:

Example:

.. code-block:: nimrod
  type
    TBinaryTree[T] = object      # TBinaryTree is a generic type with
                                 # with generic param ``T``
      le, ri: ref TBinaryTree[T] # left and right subtrees; may be nil
      data: T                    # the data stored in a node
    PBinaryTree[T] = ref TBinaryTree[T] # a shorthand for notational convenience

  proc newNode[T](data: T): PBinaryTree[T] = # constructor for a node
    new(result)
    result.dat = data

  proc add[T](root: var PBinaryTree[T], n: PBinaryTree[T]) =
    if root == nil:
      root = n
    else:
      var it = root
      while it != nil:
        var c = cmp(it.data, n.data) # compare the data items; uses
                                     # the generic ``cmd`` proc that works for
                                     # any type that has a ``==`` and ``<``
                                     # operator
        if c < 0:
          if it.le == nil:
            it.le = n
            return
          it = it.le
        else:
          if it.ri == nil:
            it.ri = n
            return
          it = it.ri

  iterator inorder[T](root: PBinaryTree[T]): T =
    # inorder traversal of a binary tree
    # recursive iterators are not yet implemented, so this does not work in
    # the current compiler!
    if root.le != nil:
      yield inorder(root.le)
    yield root.data
    if root.ri != nil:
      yield inorder(root.ri)

  var
    root: PBinaryTree[string] # instantiate a PBinaryTree with the type string
  add(root, newNode("hallo")) # instantiates generic procs ``newNode`` and
  add(root, newNode("world")) # ``add``
  for str in inorder(root):
    writeln(stdout, str)

`Generics`:idx: are Nimrod's means to parametrize procs, iterators or types with
`type parameters`:idx:. Depending on context, the brackets are used either to
introduce type parameters or to instantiate a generic proc, iterator or type.


Templates
~~~~~~~~~

A `template`:idx: is a simple form of a macro. It operates on parse trees and is
processed in the semantic pass of the compiler. So they integrate well with the
rest of the language and share none of C's preprocessor macros flaws. However,
they may lead to code that is harder to understand and maintain. So one ought
to use them sparingly. The usage of ordinary procs, iterators or generics is
preferred to the usage of templates.

Example:

.. code-block:: nimrod
  template `!=` (a, b: expr): expr =
    # this definition exists in the System module
    not (a == b)

  assert(5 != 6) # the compiler rewrites that to: assert(not (5 == 6))


Macros
------

`Macros`:idx: are the most powerful feature of Nimrod. They can be used
to implement `domain specific languages`:idx:. But they may lead to code
that is harder to understand and maintain. So one ought to use them sparingly.

While macros enable advanced compile-time code tranformations, they
cannot change Nimrod's syntax. However, this is no real restriction because
Nimrod's syntax is flexible enough anyway.

To write macros, one needs to know how the Nimrod concrete syntax is converted
to an abstract syntax tree. (Unfortunately the AST is not yet documented.)

There are two ways to invoke a macro:
(1) invoking a macro like a procedure call (`expression macros`)
(2) invoking a macro with the special ``macrostmt`` syntax (`statement macros`)


Expression Macros
~~~~~~~~~~~~~~~~~

The following example implements a powerful ``debug`` command that accepts a
variable number of arguments:

.. code-block:: nimrod
  # to work with Nimrod syntax trees, we need an API that is defined in the
  # ``macros`` module:
  import macros

  macro debug(n: expr): stmt =
    # `n` is a Nimrod AST that contains the whole macro expression
    # this macro returns a list of statements:
    result = newNimNode(nnkStmtList, n)
    # iterate over any argument that is passed to this macro:
    for i in 1..n.len-1:
      # add a call to the statement list that writes the expression;
      # `toStrLit` converts an AST to its string representation:
      add(result, newCall("write", newIdentNode("stdout"), toStrLit(n[i])))
      # add a call to the statement list that writes ": "
      add(result, newCall("write", newIdentNode("stdout"), newStrLitNode(": ")))
      # add a call to the statement list that writes the expressions value:
      add(result, newCall("writeln", newIdentNode("stdout"), n[i]))

  var
    a: array [0..10, int]
    x = "some string"
  a[0] = 42
  a[1] = 45

  debug(a[0], a[1], x)

The macro call expands to:

.. code-block:: nimrod
  write(stdout, "a[0]")
  write(stdout, ": ")
  writeln(stdout, a[0])

  write(stdout, "a[1]")
  write(stdout, ": ")
  writeln(stdout, a[1])

  write(stdout, "x")
  write(stdout, ": ")
  writeln(stdout, x)


Statement Macros
~~~~~~~~~~~~~~~~

Statement macros are defined just as expression macros. However, they are
invoked by an expression following a colon::

  exprStmt ::= lowestExpr ['=' expr | [expr (comma expr)* [comma]] [macroStmt]]
  macroStmt ::= ':' [stmt] ('of' [sliceExprList] ':' stmt
                          | 'elif' expr ':' stmt
                          | 'except' exceptList ':' stmt )*
                           ['else' ':' stmt]

The following example outlines a macro that generates a lexical analyser from
regular expressions:

.. code-block:: nimrod
  import macros

  macro case_token(n: stmt): stmt =
    # creates a lexical analyser from regular expressions
    # ... (implementation is an exercise for the reader :-)
    nil

  case_token: # this colon tells the parser it is a macro statement
  of r"[A-Za-z_]+[A-Za-z_0-9]*":
    return tkIdentifier
  of r"0-9+":
    return tkInteger
  of r"[\+\-\*\?]+":
    return tkOperator
  else:
    return tkUnknown



Modules
-------
Nimrod supports splitting a program into pieces by a `module`:idx: concept.
Each module needs to be in its own file. Modules enable
`information hiding`:idx: and `separate compilation`:idx:. A module may gain
access to symbols of another module by the `import`:idx: statement.
`Recursive module dependancies`:idx: are allowed, but slightly subtle. Only
top-level symbols that are marked with an asterisk (``*``) are exported.

The algorithm for compiling modules is:

- Compile the whole module as usual, following import statements recursively
- if there is a cycle only import the already parsed symbols (that are
  exported); if an unknown identifier occurs then abort

This is best illustrated by an example:

.. code-block:: nimrod
  # Module A
  type
    T1* = int  # Module A exports the type ``T1``
  import B     # the compiler starts parsing B

  proc main() =
    var i = p(3) # works because B has been parsed completely here

  main()


  # Module B
  import A  # A is not parsed here! Only the already known symbols
            # of A are imported.

  proc p*(x: A.T1): A.T1 =
    # this works because the compiler has already
    # added T1 to A's interface symbol table
    return x + 1


Scope rules
-----------
Identifiers are valid from the point of their declaration until the end of
the block in which the declaration occurred. The range where the identifier
is known is the `scope`:idx: of the identifier. The exact scope of an
identifier depends on the way it was declared.

Block scope
~~~~~~~~~~~
The *scope* of a variable declared in the declaration part of a block
is valid from the point of declaration until the end of the block. If a
block contains a second block, in which the identifier is redeclared,
then inside this block, the second declaration will be valid. Upon
leaving the inner block, the first declaration is valid again. An
identifier cannot be redefined in the same block, except if valid for
procedure or iterator overloading purposes.


Tuple or object scope
~~~~~~~~~~~~~~~~~~~~~
The field identifiers inside a tuple or object definition are valid in the
following places:

* To the end of the tuple/object definition
* Field designators of a variable of the given tuple/object type.
* In all descendent types of the object type.

Module scope
~~~~~~~~~~~~
All identifiers of a module are valid from the point of declaration until
the end of the module. Identifiers from indirectly dependent modules are *not* 
available. The `system`:idx: module is automatically imported in every other 
module.

If a module imports an identifier by two different modules, each occurance of 
the identifier has to be qualified, unless it is an overloaded procedure or 
iterator in which case the overloading resolution takes place:

.. code-block:: nimrod
  # Module A
  var x*: string

  # Module B
  var x*: int

  # Module C
  import A, B
  write(stdout, x) # error: x is ambigious
  write(stdout, A.x) # no error: qualifier used

  var x = 4
  write(stdout, x) # not ambigious: uses the module C's x


Messages
========

The Nimrod compiler emits different kinds of messages: `hint`:idx:,
`warning`:idx:, and `error`:idx: messages. An *error* message is emitted if
the compiler encounters any static error.

Pragmas
=======

Syntax::

  colonExpr ::= expr [':' expr]
  colonExprList ::= [colonExpr (comma colonExpr)* [comma]]

  pragma ::= '{.' optInd (colonExpr [comma])* [SAD] ('.}' | '}')

Pragmas are Nimrod's method to give the compiler additional information/
commands without introducing a massive number of new keywords. Pragmas are
processed on the fly during semantic checking. Pragmas are enclosed in the
special ``{.`` and ``.}`` curly brackets.


define pragma
-------------
The `define`:idx: pragma defines a conditional symbol. This symbol may only be
used in other pragmas and in the ``defined`` expression and not in ordinary
Nimrod source code. The conditional symbols go into a special symbol table.
The compiler defines the target processor and the target operating
system as conditional symbols.

Warning: The ``define`` pragma is deprecated as it conflicts with separate
compilation! One should use boolean constants as a replacement - this is
cleaner anyway.


undef pragma
------------
The `undef`:idx: pragma the counterpart to the define pragma. It undefines a
conditional symbol.

Warning: The ``undef`` pragma is deprecated as it conflicts with separate
compilation!


error pragma
------------
The `error`:idx: pragma is used to make the compiler output an error message
with the given content. Compilation currently aborts after an error, but this
may be changed in later versions.


fatal pragma
------------
The `fatal`:idx: pragma is used to make the compiler output an error message
with the given content. In contrast to the ``error`` pragma, compilation
is guaranteed to be aborted by this pragma.

warning pragma
--------------
The `warning`:idx: pragma is used to make the compiler output a warning message
with the given content. Compilation continues after the warning.

hint pragma
-----------
The `hint`:idx: pragma is used to make the compiler output a hint message with
the given content. Compilation continues after the hint.


compilation option pragmas
--------------------------
The listed pragmas here can be used to override the code generation options
for a section of code.

The implementation currently provides the following possible options (later
various others may be added).

===============  ===============  ============================================
pragma           allowed values   description
===============  ===============  ============================================
checks           on|off           Turns the code generation for all runtime
                                  checks on or off.
bound_checks     on|off           Turns the code generation for array bound
                                  checks on or off.
overflow_checks  on|off           Turns the code generation for over- or
                                  underflow checks on or off.
nil_checks       on|off           Turns the code generation for nil pointer
                                  checks on or off.
assertions       on|off           Turns the code generation for assertions
                                  on or off.
warnings         on|off           Turns the warning messages of the compiler
                                  on or off.
hints            on|off           Turns the hint messages of the compiler
                                  on or off.
optimization     none|speed|size  Optimize the code for speed or size, or
                                  disable optimization.
callconv         cdecl|...        Specifies the default calling convention for
                                  all procedures (and procedure types) that
                                  follow.
===============  ===============  ============================================

Example:

.. code-block:: nimrod
  {.checks: off, optimization: speed.}
  # compile without runtime checks and optimize for speed


push and pop pragmas
--------------------
The `push/pop`:idx: pragmas are very similar to the option directive,
but are used to override the settings temporarily. Example:

.. code-block:: nimrod
  {.push checks: off.}
  # compile this section without runtime checks as it is
  # speed critical
  # ... some code ...
  {.pop.} # restore old settings