summary refs log tree commit diff stats
path: root/cmd
Commit message (Expand)AuthorAgeFilesLines
* Add cetus-nasa program v0.4.0Andinus2020-03-141-0/+105
* Split project into multiple programsAndinus2020-03-141-60/+0
* Add support for random photo as background v0.3.1Andinus2020-03-141-0/+8
* Add photoID supportAndinus2020-03-141-1/+36
* Reinitialize projectAndinus2020-03-141-143/+1
* Restructure projectAndinus2020-03-141-0/+159
'>72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2023-11-01 Wed 20:16 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Architecture 1</title>
<meta name="author" content="Crystal" />
<meta name="generator" content="Org Mode" />
<link rel="stylesheet" type="text/css" href="../src/css/colors.css"/>
<link rel="stylesheet" type="text/css" href="../src/css/style.css"/>
<link rel="icon" type="image/x-icon" href="https://crystal.tilde.institute/favicon.png">
</head>
<body>
<div id="org-div-home-and-up">
 <a accesskey="h" href="../../../uni_notes/"> UP </a>
 |
 <a accesskey="H" href="https://crystal.tilde.institute/"> HOME </a>
</div><div id="content" class="content">
<h1 class="title">Architecture 1</h1>
<div id="table-of-contents" role="doc-toc">
<h2>Table of Contents</h2>
<div id="text-table-of-contents" role="doc-toc">
<ul>
<li><a href="#org3fa8932">Premier cours : Les systémes de numération <i>Sep 27</i> :</a>
<ul>
<li>
<ul>
<li><a href="#orgb23a1f3"><b>Examples :</b></a></li>
</ul>
</li>
<li><a href="#orga02a1f6">Comment passer d&rsquo;un systéme a base 10 a un autre</a>
<ul>
<li><a href="#org8c7a5f5">Pour les chiffres entiers :</a></li>
<li><a href="#org6378ac0">Pour les chiffres non entiers :</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#org251a561">2nd cours : Les systèmes de numération (Suite) <i>Oct 3</i> :</a>
<ul>
<li><a href="#org2a38085">Comment passer d&rsquo;une base N a la base 10 :</a></li>
<li><a href="#orgc0fdca1">Comment passer d&rsquo;une base N a une base N^(n) :</a>
<ul>
<li><a href="#orgba624be">Exemple :</a></li>
</ul>
</li>
<li><a href="#org789d800">L&rsquo;arithmétique binaire :</a>
<ul>
<li><a href="#orgac84614">L&rsquo;addition :</a></li>
<li><a href="#org4829f28">La soustraction :</a></li>
</ul>
</li>
<li><a href="#org110b8dd">TP N°1 :</a>
<ul>
<li><a href="#org54d7fdf">Exo1:</a></li>
<li><a href="#org6654eb2">Exo2:</a></li>
<li><a href="#org9da39d0">Exo3:</a></li>
</ul>
</li>
<li><a href="#org2039fb1">L&rsquo;arithmétique binaire (Suite): <i>Oct 4</i></a>
<ul>
<li><a href="#orgfc45d53">La multiplication :</a></li>
<li><a href="#org91fcccc">La division :</a></li>
</ul>
</li>
</ul>
</li>
<li><a href="#orgcbf8da9">4th cours : Le codage <i>Oct 10</i></a>
<ul>
<li><a href="#org34693c1">Le codage des entiers positifs</a></li>
<li><a href="#org3c8ed5c">Le codage des nombres relatifs</a>
<ul>
<li><a href="#orgb2d4951">Remarque</a></li>
<li><a href="#orgca1d761">Le codage en signe + valeur absolue (SVA):</a></li>
<li><a href="#orgd2c678f">Codage en compliment a 1 (CR):</a></li>
<li><a href="#org9961620">Codage en compliment a 2 (CV):</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
<div id="outline-container-org3fa8932" class="outline-2">
<h2 id="org3fa8932">Premier cours : Les systémes de numération <i>Sep 27</i> :</h2>
<div class="outline-text-2" id="text-org3fa8932">
<p>
Un système de numération est une méthode pour représenter des nombres à l&rsquo;aide de symboles et de règles. Chaque système, comme le décimal (base 10) ou le binaire (base 2), utilise une base définie pour représenter des valeurs numériques. Il est caractérisé par 3 entitiés mathématiques importantes:<br />
</p>

<ol class="org-ol">
<li>Une base (genre 10, ou 2)<br /></li>
<li>Un ensemble de chiffres<br /></li>
<li>Des régles de représentations des nombres<br /></li>
</ol>
</div>
<div id="outline-container-orgb23a1f3" class="outline-4">
<h4 id="orgb23a1f3"><b>Examples :</b></h4>
<div class="outline-text-4" id="text-orgb23a1f3">
<p>
<i>B10 est un systéme de numération caractérisé par:</i><br />
</p>
<ul class="org-ul">
<li>Base = 10<br /></li>
<li>Un ensemble de chiffres : (0,1,2,3,4,5,6,7,8,9)<br /></li>
</ul>

<p>
<i>B16 est un autre systéme de numération caractérisé par:</i><br />
</p>
<ul class="org-ul">
<li>Base = 16<br /></li>
<li><p>
Un ensemble de chiffres : (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)<br />
</p>

<p>
<b>Puisse-qu&rsquo;on peut pas utiliser des nombres a deux chiffres, on utilise des lettres aprés 9, en leur donnant des valeurs tel que :</b><br />
</p>

<p>
A : 10 ; B : 11 ; C : 12 ; D : 13 ; E : 14 ; F : 15<br />
</p></li>
</ul>
</div>
</div>
<div id="outline-container-orga02a1f6" class="outline-3">
<h3 id="orga02a1f6">Comment passer d&rsquo;un systéme a base 10 a un autre</h3>
<div class="outline-text-3" id="text-orga02a1f6">
<p>
On symbolise un chiffre dans la base x par : (Nombre)x<br />
</p>
</div>
<div id="outline-container-org8c7a5f5" class="outline-4">
<h4 id="org8c7a5f5">Pour les chiffres entiers :</h4>
<div class="outline-text-4" id="text-org8c7a5f5">
<p>
<b>On fait une division successive, on prends le nombre 3257 comme exemple, on veut le faire passer d&rsquo;une base décimale á une base 16:</b><br />
</p>


<p>
(3257)10 -&#x2014;&gt; (?)16<br />
</p>


<p>
On dévise 3257 par 16, et les restants de la division serra la valeur en base16:<br />
</p>

<p>
3257/16 = 203 + <b>9</b> / 16<br />
</p>

<p>
203/16 = 12 + <b>B</b> / 16  <i>REMARQUE, 11 N&rsquo;APPARTIENS PAS A L&rsquo;ENSEMBLE DES CHIFFRES EN BASE16, CE QUI VEUT DIRE QU&rsquo;ON LE REMPLACE PAR SON EQUIVALENT, DANS CE CAS LA: <b>B</b></i><br />
</p>

<p>
12/16 = 0 + <b>C</b> / 16 <i>Pareil ici, 12 n&rsquo;existe pas, donc c&rsquo;est C. Autre note : La division s&rsquo;arréte quand le résultat de la division est nul</i><br />
</p>
</div>
<ul class="org-ul">
<li><a id="org9a466ee"></a><b>Conclusion:</b><br />
<div class="outline-text-5" id="text-org9a466ee">
<p>
(3257)10 -&#x2014;&gt; (CB9)16<br />
</p>
</div>
</li>
</ul>
</div>
<div id="outline-container-org6378ac0" class="outline-4">
<h4 id="org6378ac0">Pour les chiffres non entiers :</h4>
<div class="outline-text-4" id="text-org6378ac0">
<p>
<b>On fait la division successive pour la partie entiére, et une multiplication successive pour la partie rationelle:</b><br />
</p>

<p>
(3257,32)10 -&#x2014;&gt; (?)16<br />
</p>

<p>
On a déja la partie entiére donc on s&rsquo;occupe de la partie aprés la virgule:<br />
</p>

<p>
0,32 x 16 = <b>5</b>,12<br />
</p>

<p>
0,12 x 16 = <b>1</b>,92<br />
</p>

<p>
0,92 x 16 = <b>E</b>,72 <i>On a pas de 15 donc c&rsquo;est un E</i><br />
</p>

<p>
0,72 x 16 = <b>B</b>,52<br />
</p>

<p>
0,52 x 16 = <b>8</b>,32<br />
</p>

<p>
0,32 x 16 = <b>5</b>,12<br />
</p>

<p>
&#x2026;<br />
</p>

<p>
<i>On s&rsquo;arréte quand on trouve un chiffre entier, et si on trouve pas, on s&rsquo;arréte quand on remarque une répetition, dans ce cas la, la séquance 51EB8 vas se répéter indéfiniment, donc on se contente d&rsquo;écrire la partie qui se répéte avec une barre en haut</i><br />
</p>


<p>
(3257,32)10 -&#x2014;&gt; (CB9, <span class="underline">51EB8</span>)16<br />
</p>
</div>
</div>
</div>
</div>
<div id="outline-container-org251a561" class="outline-2">
<h2 id="org251a561">2nd cours : Les systèmes de numération (Suite) <i>Oct 3</i> :</h2>
<div class="outline-text-2" id="text-org251a561">
</div>
<div id="outline-container-org2a38085" class="outline-3">
<h3 id="org2a38085">Comment passer d&rsquo;une base N a la base 10 :</h3>
<div class="outline-text-3" id="text-org2a38085">
<p>
Prenons comme exemple le nombre (11210,0011)3 , chaque chiffre dans ce nombre a un rang qui commence par 0 au premier chiffre (a gauche de la virgule) et qui augmente d&rsquo;un plus qu&rsquo;on avance a gauche, et diminue si on part a droite. Dans ce cas la :<br />
</p>


<p>
(11210,0011)3 ; le 0 est de rang 0, le 1 est de rang 1, le 2 est de rang 2, le 1 est de rang 3, le 1 est de rang 4. Et si on part du coté de la virgule, 0 est de rang -1, 0 est de rang -2, le 1 est de rang -3, et le 1 est de rang -4.<br />
</p>


<p>
Et pour passer a la base 10, il suffit d&rsquo;appliquer cette formule : <b>Chiffre x Base^(rang) + 2emeChiffre x Base^(rang)&#x2026; etc</b>, donc dans notre example:<br />
</p>


<p>
<i>0 x 3° + 1 x 3¹ + 2 x 3² + 1 x 3³ + 1 x 3^4 + 0 x 3¯¹ + 0 x 3¯² + 1 x 3¯³ + 1 x 3^(-4) ≈ (129,05)10</i><br />
</p>
</div>
</div>
<div id="outline-container-orgc0fdca1" class="outline-3">
<h3 id="orgc0fdca1">Comment passer d&rsquo;une base N a une base N^(n) :</h3>
<div class="outline-text-3" id="text-orgc0fdca1">
<p>
Si il ya une relation entre une base et une autre, on peut directement transformer vers cette base.<br />
</p>
</div>
<div id="outline-container-orgba624be" class="outline-4">
<h4 id="orgba624be">Exemple :</h4>
<div class="outline-text-4" id="text-orgba624be">
<p>
Pour passer de la base 2 a la base 8 (8 qui est 2³) on découpe les chiffres 3 par 3<br />
</p>


<p>
(1 101 011, 011)2 ; Pour le dernier 1 qui est seul <code>tout comme moi</code> il suffit d&rsquo;ajouter des 0 à gauche (car on peut) pour compléter le découpage.<br />
</p>


<p>
(001 101 011, 011)2; Next step c&rsquo;est de dessiner le tableau de conversion de la base 2 a la base 8 ( un tableau a 3 bits )<br />
</p>


<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">


<colgroup>
<col  class="org-right" />

<col  class="org-right" />

<col  class="org-right" />

<col  class="org-right" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-right">N</th>
<th scope="col" class="org-right">&#xa0;</th>
<th scope="col" class="org-right">&#xa0;</th>
<th scope="col" class="org-right">&#xa0;</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-right">0</td>
<td class="org-right">0</td>
<td class="org-right">0</td>
<td class="org-right">0</td>
</tr>

<tr>
<td class="org-right">1</td>
<td class="org-right">0</td>
<td class="org-right">0</td>
<td class="org-right">1</td>
</tr>

<tr>
<td class="org-right">2</td>
<td class="org-right">0</td>
<td class="org-right">1</td>
<td class="org-right">0</td>
</tr>

<tr>
<td class="org-right">3</td>
<td class="org-right">0</td>
<td class="org-right">1</td>
<td class="org-right">1</td>
</tr>

<tr>
<td class="org-right">4</td>
<td class="org-right">1</td>
<td class="org-right">0</td>
<td class="org-right">0</td>
</tr>

<tr>
<td class="org-right">5</td>
<td class="org-right">1</td>
<td class="org-right">0</td>
<td class="org-right">1</td>
</tr>

<tr>
<td class="org-right">6</td>
<td class="org-right">1</td>
<td class="org-right">1</td>
<td class="org-right">0</td>
</tr>

<tr>
<td class="org-right">7</td>
<td class="org-right">1</td>
<td class="org-right">1</td>
<td class="org-right">1</td>
</tr>
</tbody>
</table>


<p>
Pour remplir on a qu&rsquo;a diviser les chiffres en deux, et mettre des 0 dans la première partie et des 1 dans la 2éme, et en faire de même pour les autres colonnes .<br />
</p>


<p>
Maintenant il suffit de trouver l&rsquo;équivalent de la base2 en base8 :<br />
</p>


<p>
001 c&rsquo;est 1 ; 101 c&rsquo;est 5 ; 011 c&rsquo;est 3 ; donc <b>(1101011,011)2 &#x2014;&gt; (153,3)8</b><br />
</p>
</div>
</div>
</div>
<div id="outline-container-org789d800" class="outline-3">
<h3 id="org789d800">L&rsquo;arithmétique binaire :</h3>
<div class="outline-text-3" id="text-org789d800">
</div>
<div id="outline-container-orgac84614" class="outline-4">
<h4 id="orgac84614">L&rsquo;addition :</h4>
<div class="outline-text-4" id="text-orgac84614">
<p>
0 + 0 = 0 On retiens 0<br />
</p>


<p>
1 + 0 = 1 On retiens 0<br />
</p>


<p>
0 + 1 = 1 On retiens 0<br />
</p>


<p>
1 + 1 = 0 On retiens 1<br />
</p>


<p>
1 + 1 + 1 = 1 On retiens 1<br />
</p>


<p>
Donc 0110 + 1101 = 10011<br />
</p>
</div>
</div>
<div id="outline-container-org4829f28" class="outline-4">
<h4 id="org4829f28">La soustraction :</h4>
<div class="outline-text-4" id="text-org4829f28">
<p>
0 - 0 = 0 On emprunt = 0<br />
</p>


<p>
1 - 0 = 1 On emprunt = 0<br />
</p>


<p>
0 - 1 = 1 On emprunt = 1<br />
</p>


<p>
1 - 1 = 0 On emprunt = 0<br />
</p>
</div>
</div>
</div>
<div id="outline-container-org110b8dd" class="outline-3">
<h3 id="org110b8dd">TP N°1 :</h3>
<div class="outline-text-3" id="text-org110b8dd">
</div>
<div id="outline-container-org54d7fdf" class="outline-4">
<h4 id="org54d7fdf">Exo1:</h4>
<div class="outline-text-4" id="text-org54d7fdf">
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">


<colgroup>
<col  class="org-left" />

<col  class="org-left" />

<col  class="org-left" />

<col  class="org-left" />

<col  class="org-left" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left">Base 10</th>
<th scope="col" class="org-left">Base 2</th>
<th scope="col" class="org-left">Base 3</th>
<th scope="col" class="org-left">Base 8</th>
<th scope="col" class="org-left">Base 16</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left">22,75</td>
<td class="org-left">10110,11</td>
<td class="org-left">211, <span class="underline">20</span></td>
<td class="org-left">26,6</td>
<td class="org-left">F6,C</td>
</tr>

<tr>
<td class="org-left">684,125</td>
<td class="org-left">1010101100,001</td>
<td class="org-left">221100, <span class="underline">01</span></td>
<td class="org-left">1254,1</td>
<td class="org-left">2AC,2</td>
</tr>

<tr>
<td class="org-left">3931,625</td>
<td class="org-left">111101011011,101</td>
<td class="org-left">1101121, <span class="underline">12</span></td>
<td class="org-left">7533,5</td>
<td class="org-left">F5B,A</td>
</tr>

<tr>
<td class="org-left">52,38</td>
<td class="org-left">110100,011</td>
<td class="org-left">1221,101</td>
<td class="org-left">64,3</td>
<td class="org-left">34,6147</td>
</tr>

<tr>
<td class="org-left">10,67</td>
<td class="org-left">1010,101</td>
<td class="org-left">23,5</td>
<td class="org-left">12,5</td>
<td class="org-left">A,AB85</td>
</tr>
</tbody>
</table>
</div>
<ul class="org-ul">
<li><a id="orga7c42ee"></a>(10110,11)2<br />
<div class="outline-text-5" id="text-orga7c42ee">
<p>
0 x 2° + 1 x 2¹ + 1 x 2² + 0 x 2³ + 1 x 2^(4) + 1 x 2¯¹ + 1 x 2¯² = (22.75)10<br />
</p>
</div>
<ul class="org-ul">
<li><a id="org02d1304"></a>(22,75)10 -&#x2014;&gt; (3)<br />
<div class="outline-text-6" id="text-org02d1304">
<p>
22/3 = 7 R <b>1</b> ; 7/3 = 2 R <b>1</b> ; 2/3 = 0 R <b>2</b><br />
</p>


<p>
0,75 x 3 = <b>2</b>.25 ; 0,25 x 3 = <b>0</b>.75 &#x2026;..<br />
</p>


<p>
(22,75)10 -&#x2014;&gt; (211, <span class="underline">20</span>)<br />
</p>
</div>
</li>
<li><a id="org00a17b7"></a>(10110,11)2 -&#x2014;&gt; (8)<br />
<div class="outline-text-6" id="text-org00a17b7">
<p>
8 = 2³ ; (010 110,110)2 -&#x2014;&gt; (?)8<br />
</p>


<p>
En utilisant le tableau 3bits :<br />
</p>


<p>
010 : 2 ; 110 : 6 ; 110 : 6<br />
</p>


<p>
(10110,11)2 -&#x2014;&gt; (26,6)8<br />
</p>
</div>
</li>
<li><a id="org8bffc7b"></a>(22,75)10 -&#x2014;&gt; (16)<br />
<div class="outline-text-6" id="text-org8bffc7b">
<p>
22/16 = 1 R <b>6</b> ; 1/16 : 0 R <b>F</b><br />
</p>


<p>
0,75 x 16 = <b>C</b><br />
</p>


<p>
(22,75)10 -&#x2014;&gt; (F6,C)16<br />
</p>
</div>
</li>
</ul>
</li>
<li><a id="orgd6d1187"></a>(1254,1)8<br />
<div class="outline-text-5" id="text-orgd6d1187">
<p>
4 x 8° + 5 x 8¹ + 2 x 8² + 1 x 8³ + 1 x 8¯¹ = (684,125)10<br />
</p>
</div>
<ul class="org-ul">
<li><a id="orgfe79941"></a>(1254,1)8 -&#x2014;&gt; (?)2<br />
<div class="outline-text-6" id="text-orgfe79941">
<p>
En utilisant le tableau 3bits :<br />
</p>


<p>
001 010 101 100,001 <i>We will get rid of the leading zeros</i><br />
</p>


<p>
(1010101100,001)2<br />
</p>
</div>
</li>
<li><a id="org5468c02"></a>(684,125)10 -&#x2014;&gt; (?)3<br />
<div class="outline-text-6" id="text-org5468c02">
<p>
684/3 = 228 R <b>0</b> ; 228/3 = 76 R <b>0</b> ; 76/3 = 25 R <b>1</b> ; 25/3 = 8 R <b>1</b> ; 8/3 = 2 R <b>2</b> ; 2/3 = 0 R <b>2</b><br />
</p>


<p>
0,125 x 3 = <b>0</b>,375 ; 0,375 x 3 = <b>1</b>,125<br />
</p>


<p>
(221100, <span class="underline">01</span>)3<br />
</p>
</div>
</li>
<li><a id="org8acf355"></a>(684,125)10 -&#x2014;&gt; (?)16<br />
<div class="outline-text-6" id="text-org8acf355">
<p>
684/16 = 42 R <b>C</b> ; 42/16 = 2 R <b>A</b> ; 2/16 0 R <b>2</b><br />
</p>


<p>
0,125 x 16 = <b>2</b><br />
</p>


<p>
(2AC,2)16<br />
</p>
</div>
</li>
</ul>
</li>
<li><a id="orgaed5ea2"></a>(F5B,A)16<br />
<div class="outline-text-5" id="text-orgaed5ea2">
<p>
11 x 16° + 5 x 16 + 15 x 16² + 10 x 16¯¹ = (3931,625)10<br />
</p>
</div>
<ul class="org-ul">
<li><a id="org56c0052"></a>(3931,625)10 -&#x2014;&gt; (8)<br />
<div class="outline-text-6" id="text-org56c0052">
<p>
3931/8 = 491 R <b>3</b> ; 491/8 = 61 R <b>3</b> ; 61/8 = 7 R <b>5</b> ; 7/8 = 0 R <b>7</b><br />
</p>


<p>
0,625 x 8 = <b>5</b><br />
</p>


<p>
(7533,5)8<br />
</p>
</div>
</li>
<li><a id="org64e9962"></a>(7533,5)8 -&#x2014;&gt; (2)<br />
<div class="outline-text-6" id="text-org64e9962">
<p>
En utilisant le tableau 3bits<br />
</p>

<p>
(111 101 011 011,101)2<br />
</p>
</div>
</li>
<li><a id="org2850a22"></a>(3931,625)10 -&#x2014;&gt; (3)<br />
<div class="outline-text-6" id="text-org2850a22">
<p>
3931/3 = 1310 R <b>1</b> ; 1310/3 = 436 R <b>2</b> ; 436/3 = 145 R <b>1</b> ; 145/3 = 48 R <b>1</b> ; 48/3 = 16 R <b>0</b> ; 16/3 = 5 R <b>1</b> ; 5/3 = 1 R <b>2</b> ; 1/3 = 0 R <b>1</b><br />
</p>


<p>
0.625 x 3 = <b>1</b>,875 ; 0,875 x 3 = <b>2</b>,625<br />
</p>


<p>
(1101121, <span class="underline">12</span>)3<br />
</p>
</div>
</li>
</ul>
</li>
<li><a id="org2ee5d93"></a>(52,38)10<br />
<div class="outline-text-5" id="text-org2ee5d93">
<p>
52/2 = 26 R <b>0</b> ; 26/2 = 13 R <b>0</b> ; 13/2 = 6 R <b>1</b> ; 6/2 = 3 R <b>0</b> ; 3/2 = 1 R <b>1</b> ; 1/2 = 0 R <b>1</b><br />
</p>


<p>
0,38 x 2 = <b>0</b>,76 ; 0,76 x 2 = <b>1</b>,52 ; 0,52 x 2 = <b>1</b>,04 ; 0,04 x 2 = <b>0</b>,08 &#x2026;.<br />
</p>


<p>
(110100,0110)2<br />
</p>
</div>
<ul class="org-ul">
<li><a id="org3f89d6a"></a>(52,38)10 -&#x2014;&gt; (3)<br />
<div class="outline-text-6" id="text-org3f89d6a">
<p>
52/3 = 17 R <b>1</b> ; 17/3 = 5 R <b>2</b> ; 5/3 = 1 R <b>2</b> ; 1/3 = 0 R <b>1</b><br />
</p>


<p>
0,38 x 3 = <b>1</b>.14 ; 0,14 x 3 = <b>0</b>.42 ; 0,42 x 3 = <b>1</b>.26 ; 0.26 x 3 = <b>0</b>.78 &#x2026;<br />
</p>


<p>
(1221,101)3<br />
</p>
</div>
</li>
<li><a id="org388e3c0"></a>(110100,011)2 -&#x2014;&gt; (8)<br />
<div class="outline-text-6" id="text-org388e3c0">
<p>
En utilisant le tableau 3bits:<br />
</p>


<p>
(110 100,011)2 -&#x2014;&gt; (64,3)8<br />
</p>
</div>
</li>
<li><a id="orgb909e73"></a>(52,38)10 -&#x2014;&gt; (16)<br />
<div class="outline-text-6" id="text-orgb909e73">
<p>
52/16 = 3 R <b>4</b> ; 3/16 = 0 R <b>3</b><br />
</p>


<p>
0,38 x 16 = <b>6</b>,08 ; 0,08 x 16 = <b>1</b>,28 ; 0,28 x 16 = <b>4</b>,48 ; 0,48 x 16 = <b>7</b>,68 &#x2026;.<br />
</p>


<p>
(34,6147)16<br />
</p>
</div>
</li>
</ul>
</li>
<li><a id="org75b2f51"></a>(23,5)3<br />
<div class="outline-text-5" id="text-org75b2f51">
<p>
3 x 3° + 2 x 3 + 5 x 3¯¹ = (10.67)10<br />
</p>
</div>
<ul class="org-ul">
<li><a id="orgbc5bb6a"></a>(10,67)10 -&#x2014;&gt; (2)<br />
<div class="outline-text-6" id="text-orgbc5bb6a">
<p>
10/2 = 5 R <b>0</b> ; 5/2 = 2 R <b>1</b> ; 2/2 = 1 R <b>0</b> ; 1/2 = 0 R <b>1</b><br />
</p>


<p>
0,67 x 2 = <b>1</b>,34 ; 0,34 x 2 = <b>0</b>,68 ; 0,68 x 2 = <b>1</b>,36 ; 0,36 x 2 = <b>0</b>,72 &#x2026;<br />
</p>


<p>
(1010,101)2<br />
</p>
</div>
</li>
<li><a id="org0edf1dd"></a>(001 010,101)2 -&#x2014;&gt; (8)<br />
<div class="outline-text-6" id="text-org0edf1dd">
<p>
<b>Ô Magic 3bits table, save me soul, me children and me maiden:</b><br />
</p>


<p>
(12,5)8<br />
</p>
</div>
</li>
<li><a id="org58aafdf"></a>(10,67)10 -&#x2014;&gt; (16)<br />
<div class="outline-text-6" id="text-org58aafdf">
<p>
10/16 = 0 R <b>A</b><br />
</p>


<p>
0,67 x 16 = <b>A</b>,72 ; 0,72 x 16 = <b>B</b>,52 ; 0,52 x 16 = <b>8</b>,32 ; 0,32 x 16 = <b>5</b>,12 &#x2026;<br />
</p>


<p>
(A,AB85)16<br />
</p>
</div>
</li>
</ul>
</li>
</ul>
</div>
<div id="outline-container-org6654eb2" class="outline-4">
<h4 id="org6654eb2">Exo2:</h4>
<div class="outline-text-4" id="text-org6654eb2">
</div>
<ul class="org-ul">
<li><a id="org15754eb"></a>(34)? = (22)10<br />
<div class="outline-text-5" id="text-org15754eb">
<p>
(34)a = (22)10 ; 4 x a° + 3 x a = 22 ; 4 + 3a = 22 ; 3a = 18<br />
</p>


<p>
<b>a = 6</b><br />
</p>
</div>
</li>
<li><a id="org1c4cbd0"></a>(75)? = (117)10<br />
<div class="outline-text-5" id="text-org1c4cbd0">
<p>
(75)b = (117)10 ; 5 x b° + 7 x b¹ = 117 ; 5 + 7b = 117 ; 7b = 112<br />
</p>


<p>
<b>b = 16</b><br />
</p>
</div>
</li>
</ul>
</div>
<div id="outline-container-org9da39d0" class="outline-4">
<h4 id="org9da39d0">Exo3:</h4>
<div class="outline-text-4" id="text-org9da39d0">
</div>
<ul class="org-ul">
<li><a id="org9098512"></a>(101011)2 + (111011)2<br />
<div class="outline-text-5" id="text-org9098512">
<p>
101011 + 111011 = 1100110<br />
</p>
</div>
</li>
<li><a id="org390626e"></a>(1011,1101)2 + (11,1)2<br />
<div class="outline-text-5" id="text-org390626e">
<p>
1011,1101 + 11,1000 = 1111,0101<br />
</p>
</div>
</li>
<li><a id="org3d08c66"></a>(1010,0101)2 - (110,1001)2<br />
<div class="outline-text-5" id="text-org3d08c66">
<p>
1010,0101 - 110,1001 = 11,1100<br />
</p>
</div>
</li>
</ul>
</div>
</div>
<div id="outline-container-org2039fb1" class="outline-3">
<h3 id="org2039fb1">L&rsquo;arithmétique binaire (Suite): <i>Oct 4</i></h3>
<div class="outline-text-3" id="text-org2039fb1">
</div>
<div id="outline-container-orgfc45d53" class="outline-4">
<h4 id="orgfc45d53">La multiplication :</h4>
<div class="outline-text-4" id="text-orgfc45d53">
<p>
0 x 0 = 0<br />
</p>


<p>
0 x 1 = 0<br />
</p>


<p>
1 x 0 = 0<br />
</p>


<p>
1 x 1 = 1<br />
</p>
</div>
</div>
<div id="outline-container-org91fcccc" class="outline-4">
<h4 id="org91fcccc">La division :</h4>
<div class="outline-text-4" id="text-org91fcccc">
<p>
On divise de la manière la plus normale du monde !!!<br />
</p>
</div>
</div>
</div>
</div>
<div id="outline-container-orgcbf8da9" class="outline-2">
<h2 id="orgcbf8da9">4th cours : Le codage <i>Oct 10</i></h2>
<div class="outline-text-2" id="text-orgcbf8da9">
</div>
<div id="outline-container-org34693c1" class="outline-3">
<h3 id="org34693c1">Le codage des entiers positifs</h3>
<div class="outline-text-3" id="text-org34693c1">
<p>
Le codage sur n bits permet de representer tout les entiers naturels compris entre [0, 2^n - 1]. On peut coder sur 8bits les entiers entre [0;2^8 - 1(255)]<br />
</p>
</div>
</div>
<div id="outline-container-org3c8ed5c" class="outline-3">
<h3 id="org3c8ed5c">Le codage des nombres relatifs</h3>
<div class="outline-text-3" id="text-org3c8ed5c">
</div>
<div id="outline-container-orgb2d4951" class="outline-4">
<h4 id="orgb2d4951">Remarque</h4>
<div class="outline-text-4" id="text-orgb2d4951">
<p>
Quelque soit le codage utilise, par convention le dernier bit est reserve pour le signe. ou 1 est negatif et 0 est positif.<br />
</p>
</div>
</div>
<div id="outline-container-orgca1d761" class="outline-4">
<h4 id="orgca1d761">Le codage en signe + valeur absolue (SVA):</h4>
<div class="outline-text-4" id="text-orgca1d761">
<p>
Avec n bits le n eme est reserve au signe : [-(2^n-1)-1 , 2^n-1 -1]. Sur 8bits [-127, 127]<br />
</p>
</div>
</div>
<div id="outline-container-orgd2c678f" class="outline-4">
<h4 id="orgd2c678f">Codage en compliment a 1 (CR):</h4>
<div class="outline-text-4" id="text-orgd2c678f">
<p>
On obtiens le compliment a 1 d&rsquo;un nombre binaire en inversant chaqu&rsquo;un de ses bits (1 -&gt; 0 et 0-&gt; 1) les nombres positifs sont la meme que SVA (il reste tel qu&rsquo;il est)<br />
</p>
</div>
</div>
<div id="outline-container-org9961620" class="outline-4">
<h4 id="org9961620">Codage en compliment a 2 (CV):</h4>
<div class="outline-text-4" id="text-org9961620">
<p>
C&rsquo;est literallement CR + 1 pour les negatifs et SVA pour les nombres positifs<br />
</p>
</div>
</div>
</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Crystal</p>
<p class="date">Created: 2023-11-01 Wed 20:16</p>
</div>
</body>
</html>