diff options
author | Crystal <crystal@wizard.tower> | 2024-03-17 21:46:44 +0100 |
---|---|---|
committer | Crystal <crystal@wizard.tower> | 2024-03-17 21:46:44 +0100 |
commit | e8c190c8b2984cd562ba65890ad86213a13b9e72 (patch) | |
tree | ce0b881ede4f9c8b8b49989db4dc404a0acf4850 | |
parent | 8347b8d1f799e38d8ce88da706460ccd8aa7f8d3 (diff) | |
download | www-e8c190c8b2984cd562ba65890ad86213a13b9e72.tar.gz |
New
-rw-r--r-- | blog/asm/1.html | 74 | ||||
-rw-r--r-- | blog/c/cherry.html | 82 | ||||
-rw-r--r-- | src/org/blog/assembly/1.org | 2 | ||||
-rw-r--r-- | src/org/blog/c/cherry.org | 36 |
4 files changed, 137 insertions, 57 deletions
diff --git a/blog/asm/1.html b/blog/asm/1.html index d46759f..fcaae55 100644 --- a/blog/asm/1.html +++ b/blog/asm/1.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> -<!-- 2024-03-07 Thu 20:55 --> +<!-- 2024-03-17 Sun 21:28 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>x86 Assembly from my understanding</title> @@ -23,9 +23,9 @@ <p> Soooo this article (or maybe even a series of articles, who knows ?) will be about x86 assembly, or rather, what I understood from it and my road from the bottom-up hopefully reaching a good level of understanding </p> -<div id="outline-container-org924bef5" class="outline-2"> -<h2 id="org924bef5">Memory :</h2> -<div class="outline-text-2" id="text-org924bef5"> +<div id="outline-container-orgd547ad6" class="outline-2"> +<h2 id="orgd547ad6">Memory :</h2> +<div class="outline-text-2" id="text-orgd547ad6"> <p> Memory is a sequence of octets (Aka 8bits) that each have a unique integer assigned to them called <b>The Effective Address (EA)</b>, in this particular CPU Architecture (the i8086), the octet is designated by a couple (A segment number, and the offset in the segment) </p> @@ -40,9 +40,9 @@ Memory is a sequence of octets (Aka 8bits) that each have a unique integer assig The offset and segment are encoded in 16bits, so they take a value between 0 and 65535 </p> </div> -<div id="outline-container-orgdfa99d1" class="outline-4"> -<h4 id="orgdfa99d1">Important :</h4> -<div class="outline-text-4" id="text-orgdfa99d1"> +<div id="outline-container-org024e482" class="outline-4"> +<h4 id="org024e482">Important :</h4> +<div class="outline-text-4" id="text-org024e482"> <p> The relation between the Effective Address and the Segment & Offset is as follow : </p> @@ -52,10 +52,10 @@ The relation between the Effective Address and the Segment & Offset is as fo </p> </div> <ul class="org-ul"> -<li><a id="org8845f88"></a>Example :<br /> -<div class="outline-text-5" id="text-org8845f88"> +<li><a id="org6cfa3c7"></a>Example :<br /> +<div class="outline-text-5" id="text-org6cfa3c7"> <p> -Let the Physical address (Or Effective Address, these two terms are enterchangeable) <b>12345h</b> (the h refers to Hexadecimal, which can also be written like this <b>0x12345</b>), the register <b>DS = 1230h</b> and the register <b>SI = 0045h</b>, the CPU calculates the physical address by multiplying the content of the segment register <b>DS</b> by 10h (or 16) and adding the content of the register <b>SI</b>. so we get : <b>1230h x 10h + 45h = 12345h</b> +Let the Physical address (Or Effective Address, these two terms are interchangeable) <b>12345h</b> (the h refers to Hexadecimal, which can also be written like this <b>0x12345</b>), the register <b>DS = 1230h</b> and the register <b>SI = 0045h</b>, the CPU calculates the physical address by multiplying the content of the segment register <b>DS</b> by 10h (or 16) and adding the content of the register <b>SI</b>. so we get : <b>1230h x 10h + 45h = 12345h</b> </p> @@ -66,16 +66,16 @@ Now if you are a clever one ( I know you are, since you are reading this <3 ) </li> </ul> </div> -<div id="outline-container-org16ce372" class="outline-3"> -<h3 id="org16ce372">Registers</h3> -<div class="outline-text-3" id="text-org16ce372"> +<div id="outline-container-org6b34cdf" class="outline-3"> +<h3 id="org6b34cdf">Registers</h3> +<div class="outline-text-3" id="text-org6b34cdf"> <p> The 8086 CPU has 14 registers of 16bits of size. From the POV of the user, the 8086 has 3 groups of 4 registers of 16bits. One state register of 9bits and a counting program of 16bits inaccessible to the user (whatever this means). </p> </div> -<div id="outline-container-org8d1541d" class="outline-4"> -<h4 id="org8d1541d">General Registers</h4> -<div class="outline-text-4" id="text-org8d1541d"> +<div id="outline-container-org67926ce" class="outline-4"> +<h4 id="org67926ce">General Registers</h4> +<div class="outline-text-4" id="text-org67926ce"> <p> General registers contribute to arithmetic’s and logic and addressing too. </p> @@ -126,28 +126,28 @@ Now here are the Registers we can find in this section: </div> </div> </div> -<div id="outline-container-orgd61521c" class="outline-3"> -<h3 id="orgd61521c">Addressing and registers…again</h3> -<div class="outline-text-3" id="text-orgd61521c"> +<div id="outline-container-org824a260" class="outline-3"> +<h3 id="org824a260">Addressing and registers…again</h3> +<div class="outline-text-3" id="text-org824a260"> </div> -<div id="outline-container-orgc573bac" class="outline-4"> -<h4 id="orgc573bac">I realized what I wrote here before was almost gibberish, sooo here we go again I guess ?</h4> -<div class="outline-text-4" id="text-orgc573bac"> +<div id="outline-container-orgaa8f029" class="outline-4"> +<h4 id="orgaa8f029">I realized what I wrote here before was almost gibberish, sooo here we go again I guess ?</h4> +<div class="outline-text-4" id="text-orgaa8f029"> <p> Well lets take a step back to the notion of effective addresses VS relative ones. </p> </div> </div> -<div id="outline-container-org83b616a" class="outline-4"> -<h4 id="org83b616a">Effective = 10h x Segment + Offset . Part1</h4> -<div class="outline-text-4" id="text-org83b616a"> +<div id="outline-container-org85a2533" class="outline-4"> +<h4 id="org85a2533">Effective = 10h x Segment + Offset . Part1</h4> +<div class="outline-text-4" id="text-org85a2533"> <p> When trying to access a specific memory space, we use this annotation <b>[Segment:Offset]</b>, so for example, and assuming <b>DS = 0100h</b>. We want to write the value <b>0x0005</b> to the memory space defined by the physical address <b>1234h</b>, what do we do ? </p> </div> <ul class="org-ul"> -<li><a id="orga0fd499"></a>Answer :<br /> -<div class="outline-text-5" id="text-orga0fd499"> +<li><a id="orgae0f70c"></a>Answer :<br /> +<div class="outline-text-5" id="text-orgae0f70c"> <div class="org-src-container"> <pre class="src src-asm"><span style="color: #89b4fa;">MOV</span> [DS:0234h], 0x0005 </pre> @@ -159,7 +159,7 @@ Why ? Let’s break it down : -<div id="orge5d4a33" class="figure"> +<div id="orgd01a20f" class="figure"> <p><img src="../../src/gifs/lain-dance.gif" alt="lain-dance.gif" /> </p> </div> @@ -177,9 +177,9 @@ Simple, right ?, now for another example </li> </ul> </div> -<div id="outline-container-org93b46d0" class="outline-4"> -<h4 id="org93b46d0">Another example :</h4> -<div class="outline-text-4" id="text-org93b46d0"> +<div id="outline-container-org811633c" class="outline-4"> +<h4 id="org811633c">Another example :</h4> +<div class="outline-text-4" id="text-org811633c"> <p> What if we now have this instruction ? </p> @@ -192,9 +192,9 @@ What does it do ? You might or might not be surprised that it does the exact sam </p> </div> </div> -<div id="outline-container-orgcba10b0" class="outline-4"> -<h4 id="orgcba10b0">Segment + Register <3</h4> -<div class="outline-text-4" id="text-orgcba10b0"> +<div id="outline-container-orge6219c5" class="outline-4"> +<h4 id="orge6219c5">Segment + Register <3</h4> +<div class="outline-text-4" id="text-orge6219c5"> <p> Consider <b>DS = 0100h</b> and <b>BX = BP = 0234h</b> and this code snippet: </p> @@ -230,8 +230,8 @@ The General rule of thumb is as follows : </ul> </div> <ul class="org-ul"> -<li><a id="orgf6c5f3b"></a>Note<br /> -<div class="outline-text-5" id="text-orgf6c5f3b"> +<li><a id="orga9c3a1b"></a>Note<br /> +<div class="outline-text-5" id="text-orga9c3a1b"> <p> The values of the registers CS DS and SS are automatically initialized by the OS when launching the program. So these segments are implicit. AKA : If we want to access a specific data in memory, we just need to specify its offset. Also you can’t write directly into the DS or CS segment registers, so something like </p> @@ -249,7 +249,7 @@ The values of the registers CS DS and SS are automatically initialized by the OS </div> <div id="postamble" class="status"> <p class="author">Author: Crystal</p> -<p class="date">Created: 2024-03-07 Thu 20:55</p> +<p class="date">Created: 2024-03-17 Sun 21:28</p> </div> </body> </html> diff --git a/blog/c/cherry.html b/blog/c/cherry.html index 9b5da84..e2d9221 100644 --- a/blog/c/cherry.html +++ b/blog/c/cherry.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> -<!-- 2024-03-16 Sat 21:42 --> +<!-- 2024-03-17 Sun 21:46 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>Reviving Caesar with a Cherry-flavored Crystal</title> @@ -20,17 +20,17 @@ <a accesskey="H" href="https://crystal.tilde.institute/"> HOME </a> </div><div id="content" class="content"> <h1 class="title">Reviving Caesar with a Cherry-flavored Crystal</h1> -<div id="outline-container-org394c654" class="outline-2"> -<h2 id="org394c654">What ?…</h2> -<div class="outline-text-2" id="text-org394c654"> +<div id="outline-container-org0bff230" class="outline-2"> +<h2 id="org0bff230">What ?…</h2> +<div class="outline-text-2" id="text-org0bff230"> <p> That is probably your reaction reading this title, and no, this isn’t a randomly generated sentence, but rather a simple encryption algorithm I recently made (Actually the first encryption algorithm i make at all!!). Meet <b>Cherry-Crystal Encryption</b>. </p> </div> </div> -<div id="outline-container-org5a46ff7" class="outline-2"> -<h2 id="org5a46ff7">Okay so, what is this all about ?</h2> -<div class="outline-text-2" id="text-org5a46ff7"> +<div id="outline-container-org4770304" class="outline-2"> +<h2 id="org4770304">Okay so, what is this all about ?</h2> +<div class="outline-text-2" id="text-org4770304"> <p> This encryption Algorithm that we will call <b>CCE</b> for short, takes inspiration from the Caesar cipher which needn’t an introduction (you can find great explanations online). But what about mine you might ask ? </p> @@ -44,15 +44,15 @@ This encryption Algorithm that we will call <b>CCE</b> for short, takes inspirat </ul> </div> </div> -<div id="outline-container-org9e305ea" class="outline-2"> -<h2 id="org9e305ea">The Code :</h2> -<div class="outline-text-2" id="text-org9e305ea"> +<div id="outline-container-org4496ca5" class="outline-2"> +<h2 id="org4496ca5">The Code :</h2> +<div class="outline-text-2" id="text-org4496ca5"> <div class="org-src-container"> <pre class="src src-c"><span style="color: #f9e2af;">#include</span> <span style="color: #f38ba8;"><</span><span style="color: #a6e3a1;">stdio.h</span><span style="color: #f38ba8;">></span> <span style="color: #f9e2af;">#include</span> <span style="color: #f38ba8;"><</span><span style="color: #a6e3a1;">stdlib.h</span><span style="color: #f38ba8;">></span> <span style="color: #f9e2af;">#include</span> <span style="color: #f38ba8;"><</span><span style="color: #a6e3a1;">string.h</span><span style="color: #f38ba8;">></span> -<span style="color: #f9e2af;">void</span> <span style="color: #89b4fa;">encrypt</span><span style="color: #f38ba8;">(</span><span style="color: #f9e2af;">char</span> <span style="color: #cdd6f4;">cherry</span><span style="color: #fab387;">[]</span>, <span style="color: #f9e2af;">char</span> <span style="color: #cdd6f4;">crystal</span><span style="color: #fab387;">[]</span>, <span style="color: #f9e2af;">int</span> <span style="color: #cdd6f4;">mask</span><span style="color: #fab387;">[]</span><span style="color: #f38ba8;">)</span> <span style="color: #f38ba8;">{</span> +<span style="color: #f9e2af;">void</span> <span style="color: #89b4fa;">sloth</span><span style="color: #f38ba8;">(</span><span style="color: #f9e2af;">char</span> <span style="color: #cdd6f4;">cherry</span><span style="color: #fab387;">[]</span>, <span style="color: #f9e2af;">char</span> <span style="color: #cdd6f4;">crystal</span><span style="color: #fab387;">[]</span>, <span style="color: #f9e2af;">int</span> <span style="color: #cdd6f4;">mask</span><span style="color: #fab387;">[]</span><span style="color: #f38ba8;">)</span> <span style="color: #f38ba8;">{</span> <span style="color: #f9e2af;">int</span> <span style="color: #cdd6f4;">i</span>; <span style="color: #cba6f7;">for</span> <span style="color: #fab387;">(</span>i = <span style="color: #fab387;">0</span>; i < strlen<span style="color: #f9e2af;">(</span>cherry<span style="color: #f9e2af;">)</span> - <span style="color: #fab387;">1</span>; i++<span style="color: #fab387;">)</span> <span style="color: #fab387;">{</span> mask<span style="color: #f9e2af;">[</span>i<span style="color: #f9e2af;">]</span> = cherry<span style="color: #f9e2af;">[</span>i<span style="color: #f9e2af;">]</span> - crystal<span style="color: #f9e2af;">[</span>i<span style="color: #f9e2af;">]</span>; @@ -61,7 +61,7 @@ This encryption Algorithm that we will call <b>CCE</b> for short, takes inspirat mask<span style="color: #f9e2af;">[</span>i<span style="color: #f9e2af;">]</span> = crystal<span style="color: #f9e2af;">[</span>i<span style="color: #f9e2af;">]</span>; <span style="color: #fab387;">}</span> <span style="color: #f38ba8;">}</span> -<span style="color: #f9e2af;">void</span> <span style="color: #89b4fa;">decrypt</span><span style="color: #f38ba8;">(</span><span style="color: #f9e2af;">char</span> <span style="color: #cdd6f4;">cherry</span><span style="color: #fab387;">[]</span>, <span style="color: #f9e2af;">char</span> <span style="color: #cdd6f4;">crystal</span><span style="color: #fab387;">[]</span>, <span style="color: #f9e2af;">int</span> <span style="color: #cdd6f4;">mask</span><span style="color: #fab387;">[]</span>, <span style="color: #f9e2af;">int</span> <span style="color: #cdd6f4;">length</span><span style="color: #f38ba8;">)</span> <span style="color: #f38ba8;">{</span> +<span style="color: #f9e2af;">void</span> <span style="color: #89b4fa;">moon</span><span style="color: #f38ba8;">(</span><span style="color: #f9e2af;">char</span> <span style="color: #cdd6f4;">cherry</span><span style="color: #fab387;">[]</span>, <span style="color: #f9e2af;">char</span> <span style="color: #cdd6f4;">crystal</span><span style="color: #fab387;">[]</span>, <span style="color: #f9e2af;">int</span> <span style="color: #cdd6f4;">mask</span><span style="color: #fab387;">[]</span>, <span style="color: #f9e2af;">int</span> <span style="color: #cdd6f4;">length</span><span style="color: #f38ba8;">)</span> <span style="color: #f38ba8;">{</span> <span style="color: #f9e2af;">int</span> <span style="color: #cdd6f4;">i</span>, <span style="color: #cdd6f4;">end</span> = <span style="color: #fab387;">1</span>; <span style="color: #cba6f7;">for</span> <span style="color: #fab387;">(</span>i = <span style="color: #fab387;">0</span>; i < length; i++<span style="color: #fab387;">)</span> <span style="color: #fab387;">{</span> <span style="color: #cba6f7;">if</span> <span style="color: #f9e2af;">(</span>i == strlen<span style="color: #a6e3a1;">(</span>cherry<span style="color: #a6e3a1;">)</span> - <span style="color: #fab387;">1</span> || end == <span style="color: #fab387;">0</span><span style="color: #f9e2af;">)</span> <span style="color: #f9e2af;">{</span> @@ -81,7 +81,7 @@ This encryption Algorithm that we will call <b>CCE</b> for short, takes inspirat fgets<span style="color: #fab387;">(</span>cherry, size, stdin<span style="color: #fab387;">)</span>; puts<span style="color: #fab387;">(</span><span style="color: #a6e3a1;">"Enter the Crystal: "</span><span style="color: #fab387;">)</span>; fgets<span style="color: #fab387;">(</span>crystal, size, stdin<span style="color: #fab387;">)</span>; - encrypt<span style="color: #fab387;">(</span>cherry, crystal, mask<span style="color: #fab387;">)</span>; + sloth<span style="color: #fab387;">(</span>cherry, crystal, mask<span style="color: #fab387;">)</span>; <span style="color: #cba6f7;">for</span> <span style="color: #fab387;">(</span>i = <span style="color: #fab387;">0</span>; i < strlen<span style="color: #f9e2af;">(</span>crystal<span style="color: #f9e2af;">)</span> - <span style="color: #fab387;">1</span>; i++<span style="color: #fab387;">)</span> <span style="color: #fab387;">{</span> printf<span style="color: #f9e2af;">(</span><span style="color: #a6e3a1;">"%d "</span>, mask<span style="color: #a6e3a1;">[</span>i<span style="color: #a6e3a1;">]</span><span style="color: #f9e2af;">)</span>; length++; @@ -97,7 +97,7 @@ This encryption Algorithm that we will call <b>CCE</b> for short, takes inspirat scanf<span style="color: #f9e2af;">(</span><span style="color: #a6e3a1;">"%d"</span>, &mask2<span style="color: #a6e3a1;">[</span>i<span style="color: #a6e3a1;">]</span><span style="color: #f9e2af;">)</span>; <span style="color: #fab387;">}</span> puts<span style="color: #fab387;">(</span><span style="color: #a6e3a1;">"The Crystal is: "</span><span style="color: #fab387;">)</span>; - decrypt<span style="color: #fab387;">(</span>cherry2, crystal2, mask2, length<span style="color: #fab387;">)</span>; + moon<span style="color: #fab387;">(</span>cherry2, crystal2, mask2, length<span style="color: #fab387;">)</span>; puts<span style="color: #fab387;">(</span>crystal2<span style="color: #fab387;">)</span>; <span style="color: #cba6f7;">return</span> <span style="color: #fab387;">0</span>; <span style="color: #f38ba8;">}</span> @@ -110,10 +110,62 @@ The program has been tested both on Alpine OS with Musl libc (thanks <a href="ht </p> </div> </div> +<div id="outline-container-org6c3305a" class="outline-2"> +<h2 id="org6c3305a">How does it work ?</h2> +<div class="outline-text-2" id="text-org6c3305a"> +</div> +<div id="outline-container-orgf462a7c" class="outline-3"> +<h3 id="orgf462a7c">Slothing (Encrypting) 🦥:</h3> +<div class="outline-text-3" id="text-orgf462a7c"> +<p> +<del>What is it with these names I pick ?</del> Anyways, the <b>sloth(char *cherry, char *crystal, int *mask)</b> void function takes as parameters three variables: +</p> + +<ul class="org-ul"> +<li>A pointer to a <b>char array</b> or simply said <b>a string</b>, It’s the <b>Cherry</b>.</li> +<li>Another pointer to the <b>Crystal</b>.</li> +<li>And Finally, a pointer to an array of integers <b>The Mask</b> which will be output-ed by the function.</li> +</ul> + + +<p> +The general idea of it is like this : (we will use a quick example) +</p> + +<ul class="org-ul"> +<li><b>Cherry</b>: H e l l o \0.</li> +<li><b>Crystal</b>: W o r l d \0.</li> +<li>Cherry[0] here is <b>H</b>, or in ASCII <b>72</b>. And Crystal[0] is <b>W</b> or <b>87</b>.</li> +<li>Mask[0] in this case is : Cherry[0] - Crystal[0]. which is <b>-15</b>. We then repeat the same steps for each letter on the <b>Crystal</b>.</li> +</ul> + +<p> +Why the emphasis on <b>Crystal</b> ? Because we might end up with a case of a Crystal larger than a Cherry. we set the offset to the ASCII value of <b>Crystal[i]</b>, okay which to be fair is not the safest option out there, but I’m planning on fixing it sooner or later. In the case of a large Cherry but a small Crystal…it works but now looking at the code, i have no idea why it works the intended way…. +</p> +</div> +</div> +<div id="outline-container-org7cb73ea" class="outline-3"> +<h3 id="org7cb73ea">Mooning (Decrypting) 🌕:</h3> +<div class="outline-text-3" id="text-org7cb73ea"> +<p> +The function <b>moon(char *cherry, char *crystal, int *mask, int length)</b> works the same way as the sloth function, but in reverse and a small change. +</p> + +<ul class="org-ul"> +<li><b>The for loop goes through all the elements of the Mask and reconstructing the Crystal using the reverse equation of the encryption</b>. But when it arrives at the end of the <b>Cherry</b> (here we enter the case of a Cherry smaller than a Crystal). Then we will just assume that <b>Mask[i]</b> is the ASCII code of <b>Crystal[i]</b>, and we continue this assumption until the end of the loop.</li> +</ul> + + +<p> +And voila that’s it. Of course there might be some things I will change, but the overall concept is here! +</p> +</div> +</div> +</div> </div> <div id="postamble" class="status"> <p class="author">Author: Crystal & Sloth</p> -<p class="date">Created: 2024-03-16 Sat 21:42</p> +<p class="date">Created: 2024-03-17 Sun 21:46</p> </div> </body> </html> diff --git a/src/org/blog/assembly/1.org b/src/org/blog/assembly/1.org index 0ed897b..e268824 100644 --- a/src/org/blog/assembly/1.org +++ b/src/org/blog/assembly/1.org @@ -29,7 +29,7 @@ The relation between the Effective Address and the Segment & Offset is as follow **Effective address = 16 x segment + offset** keep in mind that this equation is encoded in decimal, which will change soon as we use Hexadecimal for convention reasons. **** Example : -Let the Physical address (Or Effective Address, these two terms are enterchangeable) *12345h* (the h refers to Hexadecimal, which can also be written like this *0x12345*), the register *DS = 1230h* and the register *SI = 0045h*, the CPU calculates the physical address by multiplying the content of the segment register *DS* by 10h (or 16) and adding the content of the register *SI*. so we get : *1230h x 10h + 45h = 12345h* +Let the Physical address (Or Effective Address, these two terms are interchangeable) *12345h* (the h refers to Hexadecimal, which can also be written like this *0x12345*), the register *DS = 1230h* and the register *SI = 0045h*, the CPU calculates the physical address by multiplying the content of the segment register *DS* by 10h (or 16) and adding the content of the register *SI*. so we get : *1230h x 10h + 45h = 12345h* Now if you are a clever one ( I know you are, since you are reading this <3 ) you may say that the physical address *12345h* can be written in more than one way....and you are right, more precisely : *2^{12} = 4096* different ways !!! diff --git a/src/org/blog/c/cherry.org b/src/org/blog/c/cherry.org index 324aa4c..beb7939 100644 --- a/src/org/blog/c/cherry.org +++ b/src/org/blog/c/cherry.org @@ -30,7 +30,7 @@ This encryption Algorithm that we will call *CCE* for short, takes inspiration f #include <stdlib.h> #include <string.h> -void encrypt(char cherry[], char crystal[], int mask[]) { +void sloth(char cherry[], char crystal[], int mask[]) { int i; for (i = 0; i < strlen(cherry) - 1; i++) { mask[i] = cherry[i] - crystal[i]; @@ -39,7 +39,7 @@ void encrypt(char cherry[], char crystal[], int mask[]) { mask[i] = crystal[i]; } } -void decrypt(char cherry[], char crystal[], int mask[], int length) { +void moon(char cherry[], char crystal[], int mask[], int length) { int i, end = 1; for (i = 0; i < length; i++) { if (i == strlen(cherry) - 1 || end == 0) { @@ -59,7 +59,7 @@ int main(int argc, char *argv[]) { fgets(cherry, size, stdin); puts("Enter the Crystal: "); fgets(crystal, size, stdin); - encrypt(cherry, crystal, mask); + sloth(cherry, crystal, mask); for (i = 0; i < strlen(crystal) - 1; i++) { printf("%d ", mask[i]); length++; @@ -75,7 +75,7 @@ int main(int argc, char *argv[]) { scanf("%d", &mask2[i]); } puts("The Crystal is: "); - decrypt(cherry2, crystal2, mask2, length); + moon(cherry2, crystal2, mask2, length); puts(crystal2); return 0; } @@ -83,3 +83,31 @@ int main(int argc, char *argv[]) { #+END_SRC The program has been tested both on Alpine OS with Musl libc (thanks [[https://kaa.neocities.org/][Kin]]) and on OpenBSD 7.5-current. In the close future I will make a git repo as i'm planning to upgrade it and just make it better overall, who knows, maybe i will make a library out of it!! + + +* How does it work ? +** Slothing (Encrypting) 🦥: ++What is it with these names I pick ?+ Anyways, the *sloth(char *cherry, char *crystal, int *mask)* void function takes as parameters three variables: + +- A pointer to a *char array* or simply said *a string*, It's the *Cherry*. +- Another pointer to the *Crystal*. +- And Finally, a pointer to an array of integers *The Mask* which will be output-ed by the function. + + +The general idea of it is like this : (we will use a quick example) + +- *Cherry*: H e l l o \0. +- *Crystal*: W o r l d \0. +- Cherry[0] here is *H*, or in ASCII *72*. And Crystal[0] is *W* or *87*. +- Mask[0] in this case is : Cherry[0] - Crystal[0]. which is *-15*. We then repeat the same steps for each letter on the *Crystal*. + +Why the emphasis on *Crystal* ? Because we might end up with a case of a Crystal larger than a Cherry. we set the offset to the ASCII value of *Crystal[i]*, okay which to be fair is not the safest option out there, but I'm planning on fixing it sooner or later. In the case of a large Cherry but a small Crystal...it works but now looking at the code, i have no idea why it works the intended way.... + + +** Mooning (Decrypting) 🌕: +The function *moon(char *cherry, char *crystal, int *mask, int length)* works the same way as the sloth function, but in reverse and a small change. + +- *The for loop goes through all the elements of the Mask and reconstructing the Crystal using the reverse equation of the encryption*. But when it arrives at the end of the *Cherry* (here we enter the case of a Cherry smaller than a Crystal). Then we will just assume that *Mask[i]* is the ASCII code of *Crystal[i]*, and we continue this assumption until the end of the loop. + + +And voila that's it. Of course there might be some things I will change, but the overall concept is here! |