summary refs log tree commit diff stats
path: root/src/org/uni_notes/algebra1.org
diff options
context:
space:
mode:
Diffstat (limited to 'src/org/uni_notes/algebra1.org')
-rwxr-xr-xsrc/org/uni_notes/algebra1.org52
1 files changed, 47 insertions, 5 deletions
diff --git a/src/org/uni_notes/algebra1.org b/src/org/uni_notes/algebra1.org
index 21e41ef..865d5b1 100755
--- a/src/org/uni_notes/algebra1.org
+++ b/src/org/uni_notes/algebra1.org
@@ -1,13 +1,16 @@
 #+title: Algebra 1
 #+AUTHOR: Crystal
 #+OPTIONS: ^:{}
+#+OPTIONS: \n:y
 #+OPTIONS: num:nil
 #+EXPORT_FILE_NAME: ../../../uni_notes/algebra.html
 #+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../src/css/colors.css"/>
 #+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../src/css/style.css"/>
 #+OPTIONS: html-style:nil
-#+OPTIONS: toc:nil
-
+#+OPTIONS: toc:4
+#+HTML_LINK_HOME: https://crystal.tilde.institute/
+#+HTML_LINK_UP: ../../../uni_notes/
+#+OPTIONS: tex:imagemagick
 * Contenu de la Matiére
 ** Rappels et compléments (11H)
 - Logique mathématique et méthodes du raisonnement mathématique
@@ -505,7 +508,7 @@ Let E be a set. We define P(E) as the set of all parts of E : *P(E) = {X/X ⊂ E
 cardinal E = n /The number of terms in E/ , cardinal P(E) = 2^n /The number of all parts of E/
 
 *** Examples :
-E = {a,b,c} // P(E)={∅, {a}, {b}, {c}, {a,b}, {b,c}, {a,c}, {a,b,c}}
+E = {a,b,c} ; P(E)={∅, {a}, {b}, {c}, {a,b}, {b,c}, {a,c}, {a,b,c}}
 
 ** Partition of a set :
 We say that *A* is a partition of E if:
@@ -515,10 +518,10 @@ c. The reunion of all elements of *A* is equal to E
 ** Cartesian products :
 Let E and F be two sets, the set EXF = {(x,y)/ x ∈ E AND y ∈ F} is called the Cartesian product of E and F
 *** Example :
-A = {4,5} ; B= {4,5,6} // AxB = {(4,4), (4,5), (4,6), (5,4), (5,5), (5,6)}
+A = {4,5} ; B= {4,5,6} ; AxB = {(4,4), (4,5), (4,6), (5,4), (5,5), (5,6)}
 
 
-BxA = {(4,4), (4,5), (5,4), (5,5), (6,4), (6,5)} // Therefore AxB ≠ BxA
+BxA = {(4,4), (4,5), (5,4), (5,5), (6,4), (6,5)} ; Therefore AxB ≠ BxA
 *** Some proprieties:
 1. ExF = ∅ ⇔ E=∅ OR F=∅
 2. ExF = FxE ⇔ E=F OR E=∅ OR F=∅
@@ -552,3 +555,42 @@ Let E be a set and R be a relation defined in E. We say that R is a relation of
 ∀x,y ∈ ℝ , xRy ⇔ x²-y²=x-y
 1. Prove that R is an equivalence relation
 2. Let a ∈ ℝ, find ̅a
+* TP exercices /Oct 20/ :
+** Exercice 3 :
+*** Question 3
+Montrer par l'absurde que P : ∀x ∈ ℝ*, √(4+x³) ≠ 2 + x³/4 est vraies
+
+#+BEGIN_VERSE
+On suppose que ∃ x ∈ ℝ* , √(4+x³) = 2 + x³/4
+4+x³ = (2 + x³/4)²
+4+x³ = 4 + x⁶/16 + 4*(x³/4)
+4+x³ = 4 + x⁶/16 + x³
+x⁶/16 = 0
+x⁶ = 0
+x = 0 . Or, x appartiens a ℝ\{0}, donc P̅ est fausse. Ce qui est equivalent a dire que P est vraie
+#+END_VERSE
+** Exercice 4 :
+*** DONE Question 1 :
+#+BEGIN_VERSE
+∀ n ∈ ℕ* , (n ,k=1)Σ1/k(k+1) = 1 - 1/1+n
+P(n) : (n ,k=1)Σ1/k(k+1) = 1 - 1/1+n
+1. *On vérifie P(n) pour n = 1*
+(1 ,k=1)Σ1/k(k+1) = 1/1(1+1)
+                  = 1/2 --- (1)
+1 - 1/1+1         = 1 - 1/2
+                  = 1/2 --- (2)
+De (1) et (2), P(0) est vraie ---- (a)
+
+2. *On suppose que P(n) est vraie pour n ≥ n1 puis on vérifie pour n+1*
+(n ,k=1)Σ1/k(k+1) = 1 - 1/1+n
+(n ,k=1)Σ1/k(k+1) + 1/(n+1)(n+2) = 1 - (1/(1+n)) + 1/(n+1)(n+2)
+(n+1 ,k=1)Σ1/k(k+1) = 1 - 1/(n+1) + 1/[(n+1)(n+2)]
+(n+1 ,k=1)Σ1/k(k+1) = 1 + 1/[(n+1)(n+2)] - (n+2)/[(n+1)(n+2)]
+(n+1 ,k=1)Σ1/k(k+1) = 1 + [1-(n+2)]/[(n+1)(n+2)]
+(n+1 ,k=1)Σ1/k(k+1) = 1 + [-n-1]/[(n+1)(n+2)]
+(n+1 ,k=1)Σ1/k(k+1) = 1 - [n+1]/[(n+1)(n+2)]
+(n+1 ,k=1)Σ1/k(k+1) = 1 - 1/(n+1+1) *CQFD*
+
+Donc P(n+1) est vraie. ---- (b)
+De (a) et (b) on conclus que la proposition de départ est vraie
+#+END_VERSE