Function Calls
What is Juxtaposition?
In Baba Yaga you call functions by putting them next to each other.
/*
JavaScript: f(x, y)
Baba Yaga: f x y
*/
Basic Examples
/* Simple function calls */
add 5 3; /* Instead of add(5, 3) */
multiply 4 7; /* Instead of multiply(4, 7) */
subtract 10 3; /* Instead of subtract(10, 3) */
/* Function calls with tables */
/* ...we'll talk more about @ in a bit */
map @double {1, 2, 3, 4, 5};
filter @is_even {1, 2, 3, 4, 5, 6};
reduce @add 0 {1, 2, 3, 4, 5};
How It Works
The parser automatically translates juxtaposition into nested calls to apply
, so that
/* f x y becomes: apply(apply(f, x), y) */
/* map double {1, 2, 3} becomes: apply(apply(map, double), {1, 2, 3}) */
Precedence Rules
Juxtaposition has lower precedence than operators,
result : add 5 multiply 3 4;
/* Parsed as: add 5 (multiply 3 4) */
/* Result: 5 + (3 * 4) = 17 */
/* Not as: (add 5 multiply) 3 4 */
With Baba Yaga you'll use juxtaposition when you
- call functions with arguments
- build function composition chains
- work with combinators like
map
,filter
,reduce
You won't use it, exactly, when you are
- defining functions (use
:
and->
) - assigning values (use
:
) - using operators (use
+
,-
,*
, etc.)
Common Patterns
/* Data processing pipeline */
data : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
is_even : x -> x % 2 = 0;
double : x -> x * 2;
sum : x -> reduce add 0 x;
/* Pipeline using juxtaposition */
result : sum map double filter is_even data;
/* Reads: sum (map double (filter is_even data)) */
/* Result: 60 */
Using Parentheses for Control
Juxtaposition eliminates the need for parentheses in most cases, parentheses are available for when you need explicit control over precedence or grouping.
/* Without parentheses - left-associative */
result1 : add 5 multiply 3 4;
/* Parsed as: add 5 (multiply 3 4) */
/* Result: 5 + (3 * 4) = 17 */
/* With parentheses - explicit grouping */
result2 : add (add 1 2) (multiply 3 4);
/* Explicitly: (1 + 2) + (3 * 4) = 3 + 12 = 15 */
/* Complex nested operations */
result3 : map double (filter is_even (map increment {1, 2, 3, 4, 5}));
/* Step by step:
1. map increment {1, 2, 3, 4, 5} → {2, 3, 4, 5, 6}
2. filter is_even {2, 3, 4, 5, 6} → {2, 4, 6}
3. map double {2, 4, 6} → {4, 8, 12}
*/
/* Hard to read without parentheses */
complex : map double filter is_even map increment {1, 2, 3, 4, 5};
/* Much clearer with parentheses */
complex : map double (filter is_even (map increment {1, 2, 3, 4, 5}));
/* Or break it into steps for maximum clarity */
step1 : map increment {1, 2, 3, 4, 5};
step2 : filter is_even step1;
step3 : map double step2;
Parentheses are also helpful for debugging because they let you isolate specific pieces of a program or chain.
data : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
/* Test each step separately */
filtered : filter @is_even data;
doubled : map @double filtered;
final : reduce @add 0 doubled;
/* Or use parentheses to test intermediate results */
test1 : filter is_even data; /* {2, 4, 6, 8, 10} */
test2 : map double (filter is_even data); /* {4, 8, 12, 16, 20} */
Spacing Rules
Baba Yaga uses spacing to distinguish between unary and binary operators...mostly just minus.
- Unary minus:
-5
(no leading space) →negate(5)
- Binary minus:
5 - 3
(spaces required) →subtract(5, 3)
- Legacy fallback:
5-3
→subtract(5, 3)
(but spaces are recommended)
The parser distinguishes between these scenarios based off of spaces, and kinda best guess heuristics. It should work as expected in most cases.
- Unary minus (negative numbers):
-5
→negate(5)
- Binary minus (subtraction):
5 - 3
→subtract(5, 3)
Spacing makes expressions less ambiguous.
Common Patterns
/* Function calls with negative numbers */
double : x -> x * 2;
result : double -5; /* unary minus */
result2 : double (-5); /* explicit grouping */
/* Comparisons with negative numbers */
is_negative : x -> x < 0;
test1 : is_negative -5; /* unary minus */
/* Complex expressions with negative numbers */
validate_age : age -> (age >= 0) and (age <= 120);
test2 : validate_age -5; /* unary minus */
/* Arithmetic with proper spacing */
result3 : -5 + 3; /* unary minus + binary plus */
result4 : 5 - 3; /* binary minus with spaces */
result5 : (-5) + 3; /* explicit grouping */
Best Practices
- Use spaces around binary operators:
5 - 3
,5 + 3
,5 * 3
- Unary minus works without parentheses:
-5
,f -5
- Legacy syntax still works:
(-5)
,5-3
(but spaces are recommended) - When in doubt, use spaces: It makes code more readable and follows conventions
When You Might Encounter This
- Arithmetic operations:
-5 + 3
,5 - 3
,(-5) + 3
- Comparisons:
-5 >= 0
,5 - 3 >= 0
- Function calls:
f -5
,f (-5)
,map double -3
- Logical expressions:
(-5 >= 0) and (-5 <= 120)
- Pattern matching:
when x is -5 then "negative five"
To make everyone's life easier, use spaces around binary operators.