summary refs log tree commit diff stats
path: root/assets/style.css
blob: 5f62e1c8927c4d07d4715b0e3147a0ad8dbe089c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
@import url("https://cdn.jsdelivr.net/gh/kognise/water.css@latest/dist/dark.min.css");

#container {
  max-width: 800px;
  margin: auto;
}

#head {
  padding-top: 20px;
  padding-bottom: 20px;
  text-align: center;
  font-size: 2em;
}

#subhead {
  text-align: right;
  font-size: 1.2em;
}

#body {
  font-size: 1.0em;
}

#info {
  font-size: 0.9em;
  padding-top: 10px;
}

#foot {
  padding-top: 20px;
  text-align: center;
  font-size: 0.8em;
}
a> 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
#
#
#           The Nim Compiler
#        (c) Copyright 2013 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## This module implements the signature matching for resolving
## the call to overloaded procs, generic procs and operators.

import
  ast, astalgo, semdata, types, msgs, renderer, lookups, semtypinst,
  magicsys, idents, lexer, options, parampatterns, trees,
  linter, lineinfos, lowerings, modulegraphs, concepts

import std/[intsets, strutils, tables]

when defined(nimPreviewSlimSystem):
  import std/assertions

type
  MismatchKind* = enum
    kUnknown, kAlreadyGiven, kUnknownNamedParam, kTypeMismatch, kVarNeeded,
    kMissingParam, kExtraArg, kPositionalAlreadyGiven,
    kGenericParamTypeMismatch, kMissingGenericParam, kExtraGenericParam

  MismatchInfo* = object
    kind*: MismatchKind # reason for mismatch
    arg*: int           # position of provided arguments that mismatches
    formal*: PSym       # parameter that mismatches against provided argument
                        # its position can differ from `arg` because of varargs

  TCandidateState* = enum
    csEmpty, csMatch, csNoMatch

  CandidateError* = object
    sym*: PSym
    firstMismatch*: MismatchInfo
    diagnostics*: seq[string]
    enabled*: bool

  CandidateErrors* = seq[CandidateError]

  TCandidate* = object
    c*: PContext
    exactMatches*: int       # also misused to prefer iters over procs
    genericMatches: int      # also misused to prefer constraints
    subtypeMatches: int
    intConvMatches: int      # conversions to int are not as expensive
    convMatches: int
    state*: TCandidateState
    callee*: PType           # may not be nil!
    calleeSym*: PSym         # may be nil
    calleeScope*: int        # scope depth:
                             # is this a top-level symbol or a nested proc?
    call*: PNode             # modified call
    bindings*: TypeMapping   # maps types to types
    magic*: TMagic           # magic of operation
    baseTypeMatch: bool      # needed for conversions from T to openarray[T]
                             # for example
    matchedErrorType*: bool  # match is considered successful after matching
                             # error type to avoid cascading errors
                             # this is used to prevent instantiations.
    genericConverter*: bool  # true if a generic converter needs to
                             # be instantiated
    coerceDistincts*: bool   # this is an explicit coercion that can strip away
                             # a distrinct type
    typedescMatched*: bool
    isNoCall*: bool          # misused for generic type instantiations C[T]
    inferredTypes: seq[PType] # inferred types during the current signature
                              # matching. they will be reset if the matching
                              # is not successful. may replace the bindings
                              # table in the future.
    diagnostics*: seq[string] # \
                              # when diagnosticsEnabled, the matching process
                              # will collect extra diagnostics that will be
                              # displayed to the user.
                              # triggered when overload resolution fails
                              # or when the explain pragma is used. may be
                              # triggered with an idetools command in the
                              # future.
                              # to prefer closest father object type
    inheritancePenalty: int
    firstMismatch*: MismatchInfo # mismatch info for better error messages
    diagnosticsEnabled*: bool

  TTypeRelFlag* = enum
    trDontBind
    trNoCovariance
    trBindGenericParam  # bind tyGenericParam even with trDontBind
    trIsOutParam

  TTypeRelFlags* = set[TTypeRelFlag]


const
  isNilConversion = isConvertible # maybe 'isIntConv' fits better?
  maxInheritancePenalty = high(int) div 2

proc markUsed*(c: PContext; info: TLineInfo, s: PSym; checkStyle = true)
proc markOwnerModuleAsUsed*(c: PContext; s: PSym)

proc initCandidateAux(ctx: PContext,
                      callee: PType): TCandidate {.inline.} =
  result = TCandidate(c: ctx, exactMatches: 0, subtypeMatches: 0,
                      convMatches: 0, intConvMatches: 0, genericMatches: 0,
                      state: csEmpty, firstMismatch: MismatchInfo(),
                      callee: callee, call: nil, baseTypeMatch: false,
                      genericConverter: false, inheritancePenalty: -1
  )

proc initCandidate*(ctx: PContext, callee: PType): TCandidate =
  result = initCandidateAux(ctx, callee)
  result.calleeSym = nil
  result.bindings = initTypeMapping()

proc put(c: var TCandidate, key, val: PType) {.inline.} =
  ## Given: proc foo[T](x: T); foo(4)
  ## key: 'T'
  ## val: 'int' (typeof(4))
  when false:
    let old = idTableGet(c.bindings, key)
    if old != nil:
      echo "Putting ", typeToString(key), " ", typeToString(val), " and old is ", typeToString(old)
      if typeToString(old) == "float32":
        writeStackTrace()
    if c.c.module.name.s == "temp3":
      echo "binding ", key, " -> ", val
  idTablePut(c.bindings, key, val.skipIntLit(c.c.idgen))

proc typeRel*(c: var TCandidate, f, aOrig: PType,
              flags: TTypeRelFlags = {}): TTypeRelation

proc matchGenericParam(m: var TCandidate, formal: PType, n: PNode) =
  var arg = n.typ
  if m.c.inGenericContext > 0:
    # don't match yet-unresolved generic instantiations
    while arg != nil and arg.kind == tyGenericParam:
      arg = idTableGet(m.bindings, arg)
    if arg == nil or arg.containsUnresolvedType:
      m.state = csNoMatch
      return
  # fix up the type to get ready to match formal:
  var formalBase = formal
  while formalBase.kind == tyGenericParam and
      formalBase.genericParamHasConstraints:
    formalBase = formalBase.genericConstraint
  if formalBase.kind == tyStatic and arg.kind != tyStatic:
    # maybe call `paramTypesMatch` here, for now be conservative
    if n.kind in nkSymChoices: n.flags.excl nfSem
    let evaluated = m.c.semTryConstExpr(m.c, n, formalBase.skipTypes({tyStatic}))
    if evaluated != nil:
      arg = newTypeS(tyStatic, m.c, son = evaluated.typ)
      arg.n = evaluated
  elif formalBase.kind == tyTypeDesc:
    if arg.kind != tyTypeDesc:
      arg = makeTypeDesc(m.c, arg)
  else:
    arg = arg.skipTypes({tyTypeDesc})
  let tm = typeRel(m, formal, arg)
  if tm in {isNone, isConvertible}:
    m.state = csNoMatch
    m.firstMismatch.kind = kGenericParamTypeMismatch
    return

proc matchGenericParams*(m: var TCandidate, binding: PNode, callee: PSym) =
  ## matches explicit generic instantiation `binding` against generic params of
  ## proc symbol `callee`
  ## state is set to `csMatch` if all generic params match, `csEmpty` if
  ## implicit generic parameters are missing (matches but cannot instantiate),
  ## `csNoMatch` if a constraint fails or param count doesn't match
  let c = m.c
  let typeParams = callee.ast[genericParamsPos]
  let paramCount = typeParams.len
  let bindingCount = binding.len-1
  if bindingCount > paramCount:
    m.state = csNoMatch
    m.firstMismatch.kind = kExtraGenericParam
    m.firstMismatch.arg = paramCount + 1
    return
  for i in 1..bindingCount:
    matchGenericParam(m, typeParams[i-1].typ, binding[i])
    if m.state == csNoMatch:
      m.firstMismatch.arg = i
      m.firstMismatch.formal = typeParams[i-1].sym
      return
  # not enough generic params given, check if remaining have defaults:
  for i in bindingCount ..< paramCount:
    let param = typeParams[i]
    assert param.kind == nkSym
    let paramSym = param.sym
    if paramSym.ast != nil:
      matchGenericParam(m, param.typ, paramSym.ast)
      if m.state == csNoMatch:
        m.firstMismatch.arg = i + 1
        m.firstMismatch.formal = paramSym
        return
    elif tfImplicitTypeParam in paramSym.typ.flags:
      # not a mismatch, but can't create sym
      m.state = csEmpty
      return
    else:
      m.state = csNoMatch
      m.firstMismatch.kind = kMissingGenericParam
      m.firstMismatch.arg = i + 1
      m.firstMismatch.formal = paramSym
      return
  m.state = csMatch

proc copyingEraseVoidParams(m: TCandidate, t: var PType) =
  ## if `t` is a proc type with void parameters, copies it and erases them
  assert t.kind == tyProc
  let original = t
  var copied = false
  for i in 1 ..< original.len:
    var f = original[i]
    var isVoidParam = f.kind == tyVoid
    if not isVoidParam:
      let prev = idTableGet(m.bindings, f)
      if prev != nil: f = prev
      isVoidParam = f.kind == tyVoid
    if isVoidParam:
      if not copied:
        # keep first i children
        t = copyType(original, m.c.idgen, t.owner)
        t.setSonsLen(i)
        t.n = copyNode(original.n)
        t.n.sons = original.n.sons
        t.n.sons.setLen(i)
        copied = true
    elif copied:
      t.add(f)
      t.n.add(original.n[i])

proc initCandidate*(ctx: PContext, callee: PSym,
                    binding: PNode, calleeScope = -1,
                    diagnosticsEnabled = false): TCandidate =
  result = initCandidateAux(ctx, callee.typ)
  result.calleeSym = callee
  if callee.kind in skProcKinds and calleeScope == -1:
    result.calleeScope = cmpScopes(ctx, callee)
  else:
    result.calleeScope = calleeScope
  result.diagnostics = @[] # if diagnosticsEnabled: @[] else: nil
  result.diagnosticsEnabled = diagnosticsEnabled
  result.magic = result.calleeSym.magic
  result.bindings = initTypeMapping()
  if binding != nil and callee.kind in routineKinds:
    matchGenericParams(result, binding, callee)
    let genericMatch = result.state
    if genericMatch != csNoMatch:
      result.state = csEmpty
      if genericMatch == csMatch: # csEmpty if not fully instantiated
        # instantiate the type, emulates old compiler behavior
        # wouldn't be needed if sigmatch could handle complex cases,
        # examples are in texplicitgenerics
        # might be buggy, see rest of generateInstance if problems occur
        let typ = ctx.instantiateOnlyProcType(ctx, result.bindings, callee, binding.info)
        result.callee = typ
      else:
        # createThread[void] requires this if the above branch is removed:
        copyingEraseVoidParams(result, result.callee)

proc newCandidate*(ctx: PContext, callee: PSym,
                   binding: PNode, calleeScope = -1): TCandidate =
  result = initCandidate(ctx, callee, binding, calleeScope)

proc newCandidate*(ctx: PContext, callee: PType): TCandidate =
  result = initCandidate(ctx, callee)

proc copyCandidate(dest: var TCandidate, src: TCandidate) =
  dest.c = src.c
  dest.exactMatches = src.exactMatches
  dest.subtypeMatches = src.subtypeMatches
  dest.convMatches = src.convMatches
  dest.intConvMatches = src.intConvMatches
  dest.genericMatches = src.genericMatches
  dest.state = src.state
  dest.callee = src.callee
  dest.calleeSym = src.calleeSym
  dest.call = copyTree(src.call)
  dest.baseTypeMatch = src.baseTypeMatch
  dest.bindings = src.bindings

proc checkGeneric(a, b: TCandidate): int =
  let c = a.c
  let aa = a.callee
  let bb = b.callee
  var winner = 0
  for aai, bbi in underspecifiedPairs(aa, bb, 1):
    var ma = newCandidate(c, bbi)
    let tra = typeRel(ma, bbi, aai, {trDontBind})
    var mb = newCandidate(c, aai)
    let trb = typeRel(mb, aai, bbi, {trDontBind})
    if tra == isGeneric and trb in {isNone, isInferred, isInferredConvertible}:
      if winner == -1: return 0
      winner = 1
    if trb == isGeneric and tra in {isNone, isInferred, isInferredConvertible}:
      if winner == 1: return 0
      winner = -1
  result = winner

proc sumGeneric(t: PType): int =
  # count the "genericness" so that Foo[Foo[T]] has the value 3
  # and Foo[T] has the value 2 so that we know Foo[Foo[T]] is more
  # specific than Foo[T].
  result = 0
  var t = t
  while true:
    case t.kind
    of tyAlias, tySink, tyNot: t = t.skipModifier
    of tyArray, tyRef, tyPtr, tyDistinct, tyUncheckedArray,
        tyOpenArray, tyVarargs, tySet, tyRange, tySequence,
        tyLent, tyOwned, tyVar:
      t = t.elementType
      inc result
    of tyBool, tyChar, tyEnum, tyObject, tyPointer, tyVoid,
        tyString, tyCstring, tyInt..tyInt64, tyFloat..tyFloat128,
        tyUInt..tyUInt64, tyCompositeTypeClass, tyBuiltInTypeClass:
      inc result
      break
    of tyGenericBody:
      t = t.typeBodyImpl
    of tyGenericInst, tyStatic:
      t = t.skipModifier
      inc result
    of tyOr:
      var maxBranch = 0
      for branch in t.kids:
        let branchSum = sumGeneric(branch)
        if branchSum > maxBranch: maxBranch = branchSum
      inc result, maxBranch
      break
    of tyTypeDesc:
      t = t.elementType
      if t.kind == tyEmpty: break
      inc result
    of tyGenericParam:
      if t.len > 0:
        t = t.skipModifier
      else:
        inc result
        break
    of tyUntyped, tyTyped: break
    of tyGenericInvocation, tyTuple, tyAnd:
      result += ord(t.kind == tyAnd)
      for a in t.kids:
        if a != nil:
          result += sumGeneric(a)
      break
    of tyProc:
      if t.returnType != nil:
        result += sumGeneric(t.returnType)
      for _, a in t.paramTypes:
        result += sumGeneric(a)
      break
    else:
      break

proc complexDisambiguation(a, b: PType): int =
  # 'a' matches better if *every* argument matches better or equal than 'b'.
  var winner = 0
  for ai, bi in underspecifiedPairs(a, b, 1):
    let x = ai.sumGeneric
    let y = bi.sumGeneric
    if x != y:
      if winner == 0:
        if x > y: winner = 1
        else: winner = -1
      elif x > y:
        if winner != 1:
          # contradiction
          return 0
      else:
        if winner != -1:
          return 0
  result = winner
  when false:
    var x, y: int
    for i in 1..<a.len: x += ai.sumGeneric
    for i in 1..<b.len: y += bi.sumGeneric
    result = x - y

proc writeMatches*(c: TCandidate) =
  echo "Candidate '", c.calleeSym.name.s, "' at ", c.c.config $ c.calleeSym.info
  echo "  exact matches: ", c.exactMatches
  echo "  generic matches: ", c.genericMatches
  echo "  subtype matches: ", c.subtypeMatches
  echo "  intconv matches: ", c.intConvMatches
  echo "  conv matches: ", c.convMatches
  echo "  inheritance: ", c.inheritancePenalty

proc cmpInheritancePenalty(a, b: int): int =
  var eb = b
  var ea = a
  if b < 0:
    eb = maxInheritancePenalty  # defacto max penalty
  if a < 0:
    ea = maxInheritancePenalty
  eb - ea

proc cmpCandidates*(a, b: TCandidate, isFormal=true): int =
  result = a.exactMatches - b.exactMatches
  if result != 0: return
  result = a.genericMatches - b.genericMatches
  if result != 0: return
  result = a.subtypeMatches - b.subtypeMatches
  if result != 0: return
  result = a.intConvMatches - b.intConvMatches
  if result != 0: return
  result = a.convMatches - b.convMatches
  if result != 0: return
  result = cmpInheritancePenalty(a.inheritancePenalty, b.inheritancePenalty)
  if result != 0: return
  if isFormal:
    # check for generic subclass relation
    result = checkGeneric(a, b)
    if result != 0: return
    # prefer more specialized generic over more general generic:
    result = complexDisambiguation(a.callee, b.callee)
  if result != 0: return
  # only as a last resort, consider scoping:
  result = a.calleeScope - b.calleeScope

proc argTypeToString(arg: PNode; prefer: TPreferedDesc): string =
  if arg.kind in nkSymChoices:
    result = typeToString(arg[0].typ, prefer)
    for i in 1..<arg.len:
      result.add(" | ")
      result.add typeToString(arg[i].typ, prefer)
  elif arg.typ == nil:
    result = "void"
  else:
    result = arg.typ.typeToString(prefer)

template describeArgImpl(c: PContext, n: PNode, i: int, startIdx = 1; prefer = preferName) =
  var arg = n[i]
  if n[i].kind == nkExprEqExpr:
    result.add renderTree(n[i][0])
    result.add ": "
    if arg.typ.isNil and arg.kind notin {nkStmtList, nkDo}:
      arg = c.semTryExpr(c, n[i][1])
      if arg == nil:
        arg = n[i][1]
        arg.typ = newTypeS(tyUntyped, c)
      else:
        if arg.typ == nil:
          arg.typ = newTypeS(tyVoid, c)
        n[i].typ = arg.typ
        n[i][1] = arg
  else:
    if arg.typ.isNil and arg.kind notin {nkStmtList, nkDo, nkElse,
                                          nkOfBranch, nkElifBranch,
                                          nkExceptBranch}:
      arg = c.semTryExpr(c, n[i])
      if arg == nil:
        arg = n[i]
        arg.typ = newTypeS(tyUntyped, c)
      else:
        if arg.typ == nil:
          arg.typ = newTypeS(tyVoid, c)
        n[i] = arg
  if arg.typ != nil and arg.typ.kind == tyError: return
  result.add argTypeToString(arg, prefer)

proc describeArg*(c: PContext, n: PNode, i: int, startIdx = 1; prefer = preferName): string =
  result = ""
  describeArgImpl(c, n, i, startIdx, prefer)

proc describeArgs*(c: PContext, n: PNode, startIdx = 1; prefer = preferName): string =
  result = ""
  for i in startIdx..<n.len:
    describeArgImpl(c, n, i, startIdx, prefer)
    if i != n.len - 1: result.add ", "

proc concreteType(c: TCandidate, t: PType; f: PType = nil): PType =
  case t.kind
  of tyTypeDesc:
    if c.isNoCall: result = t
    else: result = nil
  of tySequence, tySet:
    if t.elementType.kind == tyEmpty: result = nil
    else: result = t
  of tyGenericParam, tyAnything, tyConcept:
    result = t
    if c.isNoCall: return
    while true:
      result = idTableGet(c.bindings, t)
      if result == nil:
        break # it's ok, no match
        # example code that triggers it:
        # proc sort[T](cmp: proc(a, b: T): int = cmp)
      if result.kind != tyGenericParam: break
  of tyGenericInvocation:
    result = nil
  of tyOwned:
    # bug #11257: the comparison system.`==`[T: proc](x, y: T) works
    # better without the 'owned' type:
    if f != nil and f.hasElementType and f.elementType.skipTypes({tyBuiltInTypeClass, tyOr}).kind == tyProc:
      result = t.skipModifier
    else:
      result = t
  else:
    result = t                # Note: empty is valid here

proc handleRange(c: PContext, f, a: PType, min, max: TTypeKind): TTypeRelation =
  if a.kind == f.kind:
    result = isEqual
  else:
    let ab = skipTypes(a, {tyRange})
    let k = ab.kind
    let nf = c.config.normalizeKind(f.kind)
    let na = c.config.normalizeKind(k)
    if k == f.kind:
      # `a` is a range type matching its base type
      # see very bottom for range types matching different types
      if isIntLit(ab):
        # range type can only give isFromIntLit for base type
        result = isFromIntLit
      else:
        result = isSubrange
    elif a.kind == tyInt and f.kind in {tyRange, tyInt..tyInt64,
                                        tyUInt..tyUInt64} and
        isIntLit(ab) and getInt(ab.n) >= firstOrd(nil, f) and
                         getInt(ab.n) <= lastOrd(nil, f):
      # passing 'nil' to firstOrd/lastOrd here as type checking rules should
      # not depend on the target integer size configurations!
      # integer literal in the proper range; we want ``i16 + 4`` to stay an
      # ``int16`` operation so we declare the ``4`` pseudo-equal to int16
      result = isFromIntLit
    elif a.kind == tyInt and nf == c.config.targetSizeSignedToKind:
      result = isIntConv
    elif a.kind == tyUInt and nf == c.config.targetSizeUnsignedToKind:
      result = isIntConv
    elif f.kind == tyInt and na in {tyInt8 .. pred(c.config.targetSizeSignedToKind)}:
      result = isIntConv
    elif f.kind == tyUInt and na in {tyUInt8 .. pred(c.config.targetSizeUnsignedToKind)}:
      result = isIntConv
    elif k >= min and k <= max:
      result = isConvertible
    elif a.kind == tyRange and
      # Make sure the conversion happens between types w/ same signedness
      (f.kind in {tyInt..tyInt64} and a[0].kind in {tyInt..tyInt64} or
       f.kind in {tyUInt8..tyUInt32} and a[0].kind in {tyUInt8..tyUInt32}) and
      a.n[0].intVal >= firstOrd(nil, f) and a.n[1].intVal <= lastOrd(nil, f):
      # passing 'nil' to firstOrd/lastOrd here as type checking rules should
      # not depend on the target integer size configurations!
      result = isConvertible
    else: result = isNone

proc isConvertibleToRange(c: PContext, f, a: PType): bool =
  if f.kind in {tyInt..tyInt64, tyUInt..tyUInt64} and
     a.kind in {tyInt..tyInt64, tyUInt..tyUInt64}:
    case f.kind
    of tyInt8: result = isIntLit(a) or a.kind in {tyInt8}
    of tyInt16: result = isIntLit(a) or a.kind in {tyInt8, tyInt16}
    of tyInt32: result = isIntLit(a) or a.kind in {tyInt8, tyInt16, tyInt32}
    # This is wrong, but seems like there's a lot of code that relies on it :(
    of tyInt, tyUInt: result = true
    # of tyInt: result = isIntLit(a) or a.kind in {tyInt8 .. c.config.targetSizeSignedToKind}
    of tyInt64: result = isIntLit(a) or a.kind in {tyInt8, tyInt16, tyInt32, tyInt, tyInt64}
    of tyUInt8: result = isIntLit(a) or a.kind in {tyUInt8}
    of tyUInt16: result = isIntLit(a) or a.kind in {tyUInt8, tyUInt16}
    of tyUInt32: result = isIntLit(a) or a.kind in {tyUInt8, tyUInt16, tyUInt32}
    # of tyUInt: result = isIntLit(a) or a.kind in {tyUInt8 .. c.config.targetSizeUnsignedToKind}
    of tyUInt64: result = isIntLit(a) or a.kind in {tyUInt8, tyUInt16, tyUInt32, tyUInt64}
    else: result = false
  elif f.kind in {tyFloat..tyFloat128}:
    # `isIntLit` is correct and should be used above as well, see PR:
    # https://github.com/nim-lang/Nim/pull/11197
    result = isIntLit(a) or a.kind in {tyFloat..tyFloat128}
  else:
    result = false

proc handleFloatRange(f, a: PType): TTypeRelation =
  if a.kind == f.kind:
    result = isEqual
  else:
    let ab = skipTypes(a, {tyRange})
    var k = ab.kind
    if k == f.kind: result = isSubrange
    elif isFloatLit(ab): result = isFromIntLit
    elif isIntLit(ab): result = isConvertible
    elif k >= tyFloat and k <= tyFloat128:
      # conversion to "float32" is not as good:
      if f.kind == tyFloat32: result = isConvertible
      else: result = isIntConv
    else: result = isNone

proc reduceToBase(f: PType): PType =
  #[
    Returns the lowest order (most general) type that that is compatible with the input.
    E.g.
    A[T] = ptr object ... A -> ptr object
    A[N: static[int]] = array[N, int] ... A -> array
  ]#
  case f.kind:
  of tyGenericParam:
    if f.len <= 0 or f.skipModifier == nil:
      result = f
    else:
      result = reduceToBase(f.skipModifier)
  of tyGenericInvocation:
    result = reduceToBase(f.baseClass)
  of tyCompositeTypeClass, tyAlias:
    if not f.hasElementType or f.elementType == nil:
      result = f
    else:
      result = reduceToBase(f.elementType)
  of tyGenericInst:
    result = reduceToBase(f.skipModifier)
  of tyGenericBody:
    result = reduceToBase(f.typeBodyImpl)
  of tyUserTypeClass:
    if f.isResolvedUserTypeClass:
      result = f.base  # ?? idk if this is right
    else:
      result = f.skipModifier
  of tyStatic, tyOwned, tyVar, tyLent, tySink:
    result = reduceToBase(f.base)
  of tyInferred:
    # This is not true "After a candidate type is selected"
    result = reduceToBase(f.base)
  of tyRange:
    result = f.elementType
  else:
    result = f

proc genericParamPut(c: var TCandidate; last, fGenericOrigin: PType) =
  if fGenericOrigin != nil and last.kind == tyGenericInst and
     last.kidsLen-1 == fGenericOrigin.kidsLen:
    for i in FirstGenericParamAt..<fGenericOrigin.kidsLen:
      let x = idTableGet(c.bindings, fGenericOrigin[i])
      if x == nil:
        put(c, fGenericOrigin[i], last[i])

proc isObjectSubtype(c: var TCandidate; a, f, fGenericOrigin: PType): int =
  var t = a
  assert t.kind == tyObject
  var depth = 0
  var last = a
  while t != nil and not sameObjectTypes(f, t):
    if t.kind != tyObject:  # avoid entering generic params etc
      return -1
    t = t.baseClass
    if t == nil: break
    last = t
    t = skipTypes(t, skipPtrs)
    inc depth
  if t != nil:
    genericParamPut(c, last, fGenericOrigin)
    result = depth
  else:
    result = -1

type
  SkippedPtr = enum skippedNone, skippedRef, skippedPtr

proc skipToObject(t: PType; skipped: var SkippedPtr): PType =
  var r = t
  # we're allowed to skip one level of ptr/ref:
  var ptrs = 0
  while r != nil:
    case r.kind
    of tyGenericInvocation:
      r = r.genericHead
    of tyRef:
      inc ptrs
      skipped = skippedRef
      r = r.elementType
    of tyPtr:
      inc ptrs
      skipped = skippedPtr
      r = r.elementType
    of tyGenericInst, tyAlias, tySink, tyOwned:
      r = r.elementType
    of tyGenericBody:
      r = r.typeBodyImpl
    else:
      break
  if r.kind == tyObject and ptrs <= 1: result = r
  else: result = nil

proc isGenericSubtype(c: var TCandidate; a, f: PType, d: var int, fGenericOrigin: PType): bool =
  assert f.kind in {tyGenericInst, tyGenericInvocation, tyGenericBody}
  var askip = skippedNone
  var fskip = skippedNone
  var t = a.skipToObject(askip)
  let r = f.skipToObject(fskip)
  if r == nil: return false
  var depth = 0
  var last = a
  # XXX sameObjectType can return false here. Need to investigate
  # why that is but sameObjectType does way too much work here anyway.
  while t != nil and r.sym != t.sym and askip == fskip:
    t = t.baseClass
    if t == nil: break
    last = t
    t = t.skipToObject(askip)
    inc depth
  if t != nil and askip == fskip:
    genericParamPut(c, last, fGenericOrigin)
    d = depth
    result = true
  else:
    result = false

proc minRel(a, b: TTypeRelation): TTypeRelation =
  if a <= b: result = a
  else: result = b

proc recordRel(c: var TCandidate, f, a: PType, flags: TTypeRelFlags): TTypeRelation =
  result = isNone
  if sameType(f, a):
    result = isEqual
  elif sameTupleLengths(a, f):
    result = isEqual
    let firstField = if f.kind == tyTuple: 0
                     else: 1
    for _, ff, aa in tupleTypePairs(f, a):
      var m = typeRel(c, ff, aa, flags)
      if m < isSubtype: return isNone
      if m == isSubtype and aa.kind != tyNil and c.inheritancePenalty > -1:
        # we can't process individual element type conversions from a
        # type conversion for the whole tuple
        # subtype relations need type conversions when inheritance is used
        return isNone
      result = minRel(result, m)
    if f.n != nil and a.n != nil:
      for i in 0..<f.n.len:
        # check field names:
        if f.n[i].kind != nkSym: return isNone
        elif a.n[i].kind != nkSym: return isNone
        else:
          var x = f.n[i].sym
          var y = a.n[i].sym
          if f.kind == tyObject and typeRel(c, x.typ, y.typ, flags) < isSubtype:
            return isNone
          if x.name.id != y.name.id: return isNone

proc allowsNil(f: PType): TTypeRelation {.inline.} =
  result = if tfNotNil notin f.flags: isSubtype else: isNone

proc inconsistentVarTypes(f, a: PType): bool {.inline.} =
  result = (f.kind != a.kind and
    (f.kind in {tyVar, tyLent, tySink} or a.kind in {tyVar, tyLent, tySink})) or
    isOutParam(f) != isOutParam(a)

proc procParamTypeRel(c: var TCandidate; f, a: PType): TTypeRelation =
  ## For example we have:
  ##   ```nim
  ##   proc myMap[T,S](sIn: seq[T], f: proc(x: T): S): seq[S] = ...
  ##   proc innerProc[Q,W](q: Q): W = ...
  ##   ```
  ## And we want to match: myMap(@[1,2,3], innerProc)
  ## This proc (procParamTypeRel) will do the following steps in
  ## three different calls:
  ## - matches f=T to a=Q. Since f is metatype, we resolve it
  ##    to int (which is already known at this point). So in this case
  ##    Q=int mapping will be saved to c.bindings.
  ## - matches f=S to a=W. Both of these metatypes are unknown, so we
  ##    return with isBothMetaConvertible to ask for rerun.
  ## - matches f=S to a=W. At this point the return type of innerProc
  ##    is known (we get it from c.bindings). We can use that value
  ##    to match with f, and save back to c.bindings.
  var
    f = f
    a = a

  if a.isMetaType:
    let aResolved = idTableGet(c.bindings, a)
    if aResolved != nil:
      a = aResolved
  if a.isMetaType:
    if f.isMetaType:
      # We are matching a generic proc (as proc param)
      # to another generic type appearing in the proc
      # signature. There is a chance that the target
      # type is already fully-determined, so we are
      # going to try resolve it
      if c.call != nil:
        f = generateTypeInstance(c.c, c.bindings, c.call.info, f)
      else:
        f = nil
      if f == nil or f.isMetaType:
        # no luck resolving the type, so the inference fails
        return isBothMetaConvertible
    # Note that this typeRel call will save a's resolved type into c.bindings
    let reverseRel = typeRel(c, a, f)
    if reverseRel >= isGeneric:
      result = isInferred
      #inc c.genericMatches
    else:
      result = isNone
  else:
    # Note that this typeRel call will save f's resolved type into c.bindings
    # if f is metatype.
    result = typeRel(c, f, a)

  if result <= isSubrange or inconsistentVarTypes(f, a):
    result = isNone

  #if result == isEqual:
  #  inc c.exactMatches

proc procTypeRel(c: var TCandidate, f, a: PType): TTypeRelation =
  case a.kind
  of tyProc:
    var f = f
    copyingEraseVoidParams(c, f)
    if f.signatureLen != a.signatureLen: return
    result = isEqual      # start with maximum; also correct for no
                          # params at all

    if f.flags * {tfIterator} != a.flags * {tfIterator}:
      return isNone

    template checkParam(f, a) =
      result = minRel(result, procParamTypeRel(c, f, a))
      if result == isNone: return

    # Note: We have to do unification for the parameters before the
    # return type!
    for i in 1..<f.len:
      checkParam(f[i], a[i])

    if f[0] != nil:
      if a[0] != nil:
        checkParam(f[0], a[0])
      else:
        return isNone
    elif a[0] != nil:
      return isNone

    result = getProcConvMismatch(c.c.config, f, a, result)[1]

    when useEffectSystem:
      if compatibleEffects(f, a) != efCompat: return isNone
    when defined(drnim):
      if not c.c.graph.compatibleProps(c.c.graph, f, a): return isNone

  of tyNil:
    result = f.allowsNil
  else: result = isNone

proc typeRangeRel(f, a: PType): TTypeRelation {.noinline.} =
  template checkRange[T](a0, a1, f0, f1: T): TTypeRelation =
    if a0 == f0 and a1 == f1:
      isEqual
    elif a0 >= f0 and a1 <= f1:
      isConvertible
    elif a0 <= f1 and f0 <= a1:
      # X..Y and C..D overlap iff (X <= D and C <= Y)
      isConvertible
    else:
      isNone

  if f.isOrdinalType:
    checkRange(firstOrd(nil, a), lastOrd(nil, a), firstOrd(nil, f), lastOrd(nil, f))
  else:
    checkRange(firstFloat(a), lastFloat(a), firstFloat(f), lastFloat(f))


proc matchUserTypeClass*(m: var TCandidate; ff, a: PType): PType =
  var
    c = m.c
    typeClass = ff.skipTypes({tyUserTypeClassInst})
    body = typeClass.n[3]
    matchedConceptContext = TMatchedConcept()
    prevMatchedConcept = c.matchedConcept
    prevCandidateType = typeClass[0][0]

  if prevMatchedConcept != nil:
    matchedConceptContext.prev = prevMatchedConcept
    matchedConceptContext.depth = prevMatchedConcept.depth + 1
    if prevMatchedConcept.depth > 4:
      localError(m.c.graph.config, body.info, $body & " too nested for type matching")
      return nil

  openScope(c)
  matchedConceptContext.candidateType = a
  typeClass[0][0] = a
  c.matchedConcept = addr(matchedConceptContext)
  defer:
    c.matchedConcept = prevMatchedConcept
    typeClass[0][0] = prevCandidateType
    closeScope(c)

  var typeParams: seq[(PSym, PType)] = @[]

  if ff.kind == tyUserTypeClassInst:
    for i in 1..<(ff.len - 1):
      var
        typeParamName = ff.base[i-1].sym.name
        typ = ff[i]
        param: PSym = nil
        alreadyBound = idTableGet(m.bindings, typ)

      if alreadyBound != nil: typ = alreadyBound

      template paramSym(kind): untyped =
        newSym(kind, typeParamName, c.idgen, typeClass.sym, typeClass.sym.info, {})

      block addTypeParam:
        for prev in typeParams:
          if prev[1].id == typ.id:
            param = paramSym prev[0].kind
            param.typ = prev[0].typ
            break addTypeParam

        case typ.kind
        of tyStatic:
          param = paramSym skConst
          param.typ = typ.exactReplica
          #copyType(typ, c.idgen, typ.owner)
          if typ.n == nil:
            param.typ.flags.incl tfInferrableStatic
          else:
            param.ast = typ.n
        of tyFromExpr:
          param = paramSym skVar
          param.typ = typ.exactReplica
          #copyType(typ, c.idgen, typ.owner)
        else:
          param = paramSym skType
          param.typ = if typ.isMetaType:
                        newTypeS(tyInferred, c, typ)
                      else:
                        makeTypeDesc(c, typ)

        typeParams.add((param, typ))

      addDecl(c, param)

  var
    oldWriteHook = default typeof(m.c.config.writelnHook)
    diagnostics: seq[string] = @[]
    errorPrefix: string
    flags: TExprFlags = {}
    collectDiagnostics = m.diagnosticsEnabled or
                         sfExplain in typeClass.sym.flags

  if collectDiagnostics:
    oldWriteHook = m.c.config.writelnHook
    # XXX: we can't write to m.diagnostics directly, because
    # Nim doesn't support capturing var params in closures
    diagnostics = @[]
    flags = {efExplain}
    m.c.config.writelnHook = proc (s: string) =
      if errorPrefix.len == 0: errorPrefix = typeClass.sym.name.s & ":"
      let msg = s.replace("Error:", errorPrefix)
      if oldWriteHook != nil: oldWriteHook msg
      diagnostics.add msg

  var checkedBody = c.semTryExpr(c, body.copyTree, flags)

  if collectDiagnostics:
    m.c.config.writelnHook = oldWriteHook
    for msg in diagnostics:
      m.diagnostics.add msg
      m.diagnosticsEnabled = true

  if checkedBody == nil: return nil

  # The inferrable type params have been identified during the semTryExpr above.
  # We need to put them in the current sigmatch's binding table in order for them
  # to be resolvable while matching the rest of the parameters
  for p in typeParams:
    put(m, p[1], p[0].typ)

  if ff.kind == tyUserTypeClassInst:
    result = generateTypeInstance(c, m.bindings, typeClass.sym.info, ff)
  else:
    result = ff.exactReplica
    #copyType(ff, c.idgen, ff.owner)

  result.n = checkedBody

proc shouldSkipDistinct(m: TCandidate; rules: PNode, callIdent: PIdent): bool =
  # XXX This is bad as 'considerQuotedIdent' can produce an error!
  if rules.kind == nkWith:
    for r in rules:
      if considerQuotedIdent(m.c, r) == callIdent: return true
    return false
  else:
    for r in rules:
      if considerQuotedIdent(m.c, r) == callIdent: return false
    return true

proc maybeSkipDistinct(m: TCandidate; t: PType, callee: PSym): PType =
  if t != nil and t.kind == tyDistinct and t.n != nil and
     shouldSkipDistinct(m, t.n, callee.name):
    result = t.base
  else:
    result = t

proc tryResolvingStaticExpr(c: var TCandidate, n: PNode,
                            allowUnresolved = false,
                            allowCalls = false,
                            expectedType: PType = nil): PNode =
  # Consider this example:
  #   type Value[N: static[int]] = object
  #   proc foo[N](a: Value[N], r: range[0..(N-1)])
  # Here, N-1 will be initially nkStaticExpr that can be evaluated only after
  # N is bound to a concrete value during the matching of the first param.
  # This proc is used to evaluate such static expressions.
  let instantiated = replaceTypesInBody(c.c, c.bindings, n, nil,
                                        allowMetaTypes = allowUnresolved)
  if not allowCalls and instantiated.kind in nkCallKinds:
    return nil
  result = c.c.semExpr(c.c, instantiated)

proc inferStaticParam*(c: var TCandidate, lhs: PNode, rhs: BiggestInt): bool =
  # This is a simple integer arithimetic equation solver,
  # capable of deriving the value of a static parameter in
  # expressions such as (N + 5) / 2 = rhs
  #
  # Preconditions:
  #
  #   * The input of this proc must be semantized
  #     - all templates should be expanded
  #     - aby constant folding possible should already be performed
  #
  #   * There must be exactly one unresolved static parameter
  #
  # Result:
  #
  #   The proc will return true if the static types was successfully
  #   inferred. The result will be bound to the original static type
  #   in the TCandidate.
  #
  if lhs.kind in nkCallKinds and lhs[0].kind == nkSym:
    case lhs[0].sym.magic
    of mAddI, mAddU, mInc, mSucc:
      if lhs[1].kind == nkIntLit:
        return inferStaticParam(c, lhs[2], rhs - lhs[1].intVal)
      elif lhs[2].kind == nkIntLit:
        return inferStaticParam(c, lhs[1], rhs - lhs[2].intVal)

    of mDec, mSubI, mSubU, mPred:
      if lhs[1].kind == nkIntLit:
        return inferStaticParam(c, lhs[2], lhs[1].intVal - rhs)
      elif lhs[2].kind == nkIntLit:
        return inferStaticParam(c, lhs[1], rhs + lhs[2].intVal)

    of mMulI, mMulU:
      if lhs[1].kind == nkIntLit:
        if rhs mod lhs[1].intVal == 0:
          return inferStaticParam(c, lhs[2], rhs div lhs[1].intVal)
      elif lhs[2].kind == nkIntLit:
        if rhs mod lhs[2].intVal == 0:
          return inferStaticParam(c, lhs[1], rhs div lhs[2].intVal)

    of mDivI, mDivU:
      if lhs[1].kind == nkIntLit:
        if lhs[1].intVal mod rhs == 0:
          return inferStaticParam(c, lhs[2], lhs[1].intVal div rhs)
      elif lhs[2].kind == nkIntLit:
        return inferStaticParam(c, lhs[1], lhs[2].intVal * rhs)

    of mShlI:
      if lhs[2].kind == nkIntLit:
        return inferStaticParam(c, lhs[1], rhs shr lhs[2].intVal)

    of mShrI:
      if lhs[2].kind == nkIntLit:
        return inferStaticParam(c, lhs[1], rhs shl lhs[2].intVal)

    of mAshrI:
      if lhs[2].kind == nkIntLit:
        return inferStaticParam(c, lhs[1], ashr(rhs, lhs[2].intVal))

    of mUnaryMinusI:
      return inferStaticParam(c, lhs[1], -rhs)

    of mUnaryPlusI:
      return inferStaticParam(c, lhs[1], rhs)

    else: discard

  elif lhs.kind == nkSym and lhs.typ.kind == tyStatic and
      (lhs.typ.n == nil or idTableGet(c.bindings, lhs.typ) == nil):
    var inferred = newTypeS(tyStatic, c.c, lhs.typ.elementType)
    inferred.n = newIntNode(nkIntLit, rhs)
    put(c, lhs.typ, inferred)
    if c.c.matchedConcept != nil:
      # inside concepts, binding is currently done with
      # direct mutation of the involved types:
      lhs.typ.n = inferred.n
    return true

  return false

proc failureToInferStaticParam(conf: ConfigRef; n: PNode) =
  let staticParam = n.findUnresolvedStatic
  let name = if staticParam != nil: staticParam.sym.name.s
             else: "unknown"
  localError(conf, n.info, "cannot infer the value of the static param '" & name & "'")

proc inferStaticsInRange(c: var TCandidate,
                         inferred, concrete: PType): TTypeRelation =
  let lowerBound = tryResolvingStaticExpr(c, inferred.n[0],
                                          allowUnresolved = true)
  let upperBound = tryResolvingStaticExpr(c, inferred.n[1],
                                          allowUnresolved = true)
  template doInferStatic(e: PNode, r: Int128) =
    var exp = e
    var rhs = r
    if inferStaticParam(c, exp, toInt64(rhs)):
      return isGeneric
    else:
      failureToInferStaticParam(c.c.config, exp)

  result = isNone
  if lowerBound.kind == nkIntLit:
    if upperBound.kind == nkIntLit:
      if lengthOrd(c.c.config, concrete) == upperBound.intVal - lowerBound.intVal + 1:
        return isGeneric
      else:
        return isNone
    doInferStatic(upperBound, lengthOrd(c.c.config, concrete) + lowerBound.intVal - 1)
  elif upperBound.kind == nkIntLit:
    doInferStatic(lowerBound, getInt(upperBound) + 1 - lengthOrd(c.c.config, concrete))

template subtypeCheck() =
  case result
  of isIntConv:
    result = isNone
  of isSubrange:
    discard # XXX should be isNone with preview define, warnings
  of isConvertible:
    if f.last.skipTypes(abstractInst).kind != tyOpenArray:
      # exclude var openarray which compiler supports
      result = isNone
  of isSubtype:
    if f.last.skipTypes(abstractInst).kind in {
        tyRef, tyPtr, tyVar, tyLent, tyOwned}:
      # compiler can't handle subtype conversions with pointer indirection
      result = isNone
  else: discard

proc isCovariantPtr(c: var TCandidate, f, a: PType): bool =
  # this proc is always called for a pair of matching types
  assert f.kind == a.kind

  template baseTypesCheck(lhs, rhs: PType): bool =
    lhs.kind notin {tyPtr, tyRef, tyVar, tyLent, tyOwned} and
      typeRel(c, lhs, rhs, {trNoCovariance}) == isSubtype

  case f.kind
  of tyRef, tyPtr, tyOwned:
    return baseTypesCheck(f.base, a.base)
  of tyGenericInst:
    let body = f.base
    return body == a.base and
           a.len == 3 and
           tfWeakCovariant notin body[0].flags and
           baseTypesCheck(f[1], a[1])
  else:
    return false

when false:
  proc maxNumericType(prev, candidate: PType): PType =
    let c = candidate.skipTypes({tyRange})
    template greater(s) =
      if c.kind in s: result = c
    case prev.kind
    of tyInt: greater({tyInt64})
    of tyInt8: greater({tyInt, tyInt16, tyInt32, tyInt64})
    of tyInt16: greater({tyInt, tyInt32, tyInt64})
    of tyInt32: greater({tyInt64})

    of tyUInt: greater({tyUInt64})
    of tyUInt8: greater({tyUInt, tyUInt16, tyUInt32, tyUInt64})
    of tyUInt16: greater({tyUInt, tyUInt32, tyUInt64})
    of tyUInt32: greater({tyUInt64})

    of tyFloat32: greater({tyFloat64, tyFloat128})
    of tyFloat64: greater({tyFloat128})
    else: discard

template skipOwned(a) =
  if a.kind == tyOwned: a = a.skipTypes({tyOwned, tyGenericInst})

proc typeRel(c: var TCandidate, f, aOrig: PType,
             flags: TTypeRelFlags = {}): TTypeRelation =
  # typeRel can be used to establish various relationships between types:
  #
  # 1) When used with concrete types, it will check for type equivalence
  # or a subtype relationship.
  #
  # 2) When used with a concrete type against a type class (such as generic
  # signature of a proc), it will check whether the concrete type is a member
  # of the designated type class.
  #
  # 3) When used with two type classes, it will check whether the types
  # matching the first type class (aOrig) are a strict subset of the types matching
  # the other (f). This allows us to compare the signatures of generic procs in
  # order to give preferrence to the most specific one:
  #
  # seq[seq[any]] is a strict subset of seq[any] and hence more specific.

  result = isNone
  assert(f != nil)

  when declared(deallocatedRefId):
    let corrupt = deallocatedRefId(cast[pointer](f))
    if corrupt != 0:
      c.c.config.quitOrRaise "it's corrupt " & $corrupt

  if f.kind == tyUntyped:
    if aOrig != nil: put(c, f, aOrig)
    return isGeneric

  assert(aOrig != nil)

  var
    useTypeLoweringRuleInTypeClass = c.c.matchedConcept != nil and
                                     not c.isNoCall and
                                     f.kind != tyTypeDesc and
                                     tfExplicit notin aOrig.flags and
                                     tfConceptMatchedTypeSym notin aOrig.flags

    aOrig = if useTypeLoweringRuleInTypeClass:
          aOrig.skipTypes({tyTypeDesc})
        else:
          aOrig

  if aOrig.kind == tyInferred:
    let prev = aOrig.previouslyInferred
    if prev != nil:
      return typeRel(c, f, prev, flags)
    else:
      var candidate = f

      case f.kind
      of tyGenericParam:
        var prev = idTableGet(c.bindings, f)
        if prev != nil: candidate = prev
      of tyFromExpr:
        let computedType = tryResolvingStaticExpr(c, f.n).typ
        case computedType.kind
        of tyTypeDesc:
          candidate = computedType.base
        of tyStatic:
          candidate = computedType
        else:
          # XXX What is this non-sense? Error reporting in signature matching?
          discard "localError(f.n.info, errTypeExpected)"
      else:
        discard

      result = typeRel(c, aOrig.base, candidate, flags)
      if result != isNone:
        c.inferredTypes.add aOrig
        aOrig.add candidate
        result = isEqual
      return

  template doBind: bool = trDontBind notin flags

  # var, sink and static arguments match regular modifier-free types
  var a = maybeSkipDistinct(c, aOrig.skipTypes({tyStatic, tyVar, tyLent, tySink}), c.calleeSym)
  # XXX: Theoretically, maybeSkipDistinct could be called before we even
  # start the param matching process. This could be done in `prepareOperand`
  # for example, but unfortunately `prepareOperand` is not called in certain
  # situation when nkDotExpr are rotated to nkDotCalls

  if aOrig.kind in {tyAlias, tySink}:
    return typeRel(c, f, skipModifier(aOrig), flags)

  if a.kind == tyGenericInst and
      skipTypes(f, {tyStatic, tyVar, tyLent, tySink}).kind notin {
        tyGenericBody, tyGenericInvocation,
        tyGenericInst, tyGenericParam} + tyTypeClasses:
    return typeRel(c, f, skipModifier(a), flags)

  if a.isResolvedUserTypeClass:
    return typeRel(c, f, a.skipModifier, flags)

  template bindingRet(res) =
    if doBind:
      let bound = aOrig.skipTypes({tyRange}).skipIntLit(c.c.idgen)
      put(c, f, bound)
    return res

  template considerPreviousT(body: untyped) =
    var prev = idTableGet(c.bindings, f)
    if prev == nil: body
    else: return typeRel(c, prev, a, flags)

  if c.c.inGenericContext > 0 and not c.isNoCall and
      (tfUnresolved in a.flags or a.kind in tyTypeClasses):
    # cheap check for unresolved arg, not nested
    return isNone

  case a.kind
  of tyOr:
    # XXX: deal with the current dual meaning of tyGenericParam
    c.typedescMatched = true
    # seq[int|string] vs seq[number]
    # both int and string must match against number
    # but ensure that '[T: A|A]' matches as good as '[T: A]' (bug #2219):
    result = isGeneric
    for branch in a.kids:
      let x = typeRel(c, f, branch, flags + {trDontBind})
      if x == isNone: return isNone
      if x < result: result = x
    return result
  of tyAnd:
    # XXX: deal with the current dual meaning of tyGenericParam
    c.typedescMatched = true
    # seq[Sortable and Iterable] vs seq[Sortable]
    # only one match is enough
    for branch in a.kids:
      let x = typeRel(c, f, branch, flags + {trDontBind})
      if x != isNone:
        return if x >= isGeneric: isGeneric else: x
    return isNone
  of tyIterable:
    if f.kind != tyIterable: return isNone
  of tyNot:
    case f.kind
    of tyNot:
      # seq[!int] vs seq[!number]
      # seq[float] matches the first, but not the second
      # we must turn the problem around:
      # is number a subset of int?
      return typeRel(c, a.elementType, f.elementType, flags)

    else:
      # negative type classes are essentially infinite,
      # so only the `any` type class is their superset
      return if f.kind == tyAnything: isGeneric
             else: isNone
  of tyAnything:
    if f.kind == tyAnything: return isGeneric
    else: return isNone
  of tyUserTypeClass, tyUserTypeClassInst:
    if c.c.matchedConcept != nil and c.c.matchedConcept.depth <= 4:
      # consider this: 'var g: Node' *within* a concept where 'Node'
      # is a concept too (tgraph)
      inc c.c.matchedConcept.depth
      let x = typeRel(c, a, f, flags + {trDontBind})
      if x >= isGeneric:
        return isGeneric
  of tyFromExpr:
    if c.c.inGenericContext > 0:
      if not c.isNoCall:
        # generic type bodies can sometimes compile call expressions
        # prevent expressions with unresolved types from
        # being passed as parameters
        return isNone
      else:
        # Foo[templateCall(T)] shouldn't fail early if Foo has a constraint
        # and we can't evaluate `templateCall(T)` yet
        return isGeneric
  else: discard

  case f.kind
  of tyEnum:
    if a.kind == f.kind and sameEnumTypes(f, a): result = isEqual
    elif sameEnumTypes(f, skipTypes(a, {tyRange})): result = isSubtype
  of tyBool, tyChar:
    if a.kind == f.kind: result = isEqual
    elif skipTypes(a, {tyRange}).kind == f.kind: result = isSubtype
  of tyRange:
    if a.kind == f.kind:
      if f.base.kind == tyNone: return isGeneric
      result = typeRel(c, base(f), base(a), flags)
      # bugfix: accept integer conversions here
      #if result < isGeneric: result = isNone
      if result notin {isNone, isGeneric}:
        # resolve any late-bound static expressions
        # that may appear in the range:
        let expectedType = base(f)
        for i in 0..1:
          if f.n[i].kind == nkStaticExpr:
            let r = tryResolvingStaticExpr(c, f.n[i], expectedType = expectedType)
            if r != nil:
              f.n[i] = r
        result = typeRangeRel(f, a)
    else:
      let f = skipTypes(f, {tyRange})
      if f.kind == a.kind and (f.kind != tyEnum or sameEnumTypes(f, a)):
        result = isIntConv
      elif isConvertibleToRange(c.c, f, a):
        result = isConvertible  # a convertible to f
  of tyInt:      result = handleRange(c.c, f, a, tyInt8, c.c.config.targetSizeSignedToKind)
  of tyInt8:     result = handleRange(c.c, f, a, tyInt8, tyInt8)
  of tyInt16:    result = handleRange(c.c, f, a, tyInt8, tyInt16)
  of tyInt32:    result = handleRange(c.c, f, a, tyInt8, tyInt32)
  of tyInt64:    result = handleRange(c.c, f, a, tyInt, tyInt64)
  of tyUInt:     result = handleRange(c.c, f, a, tyUInt8, c.c.config.targetSizeUnsignedToKind)
  of tyUInt8:    result = handleRange(c.c, f, a, tyUInt8, tyUInt8)
  of tyUInt16:   result = handleRange(c.c, f, a, tyUInt8, tyUInt16)
  of tyUInt32:   result = handleRange(c.c, f, a, tyUInt8, tyUInt32)
  of tyUInt64:   result = handleRange(c.c, f, a, tyUInt, tyUInt64)
  of tyFloat:    result = handleFloatRange(f, a)
  of tyFloat32:  result = handleFloatRange(f, a)
  of tyFloat64:  result = handleFloatRange(f, a)
  of tyFloat128: result = handleFloatRange(f, a)
  of tyVar:
    let flags = if isOutParam(f): flags + {trIsOutParam} else: flags
    if aOrig.kind == f.kind and (isOutParam(aOrig) == isOutParam(f)):
      result = typeRel(c, f.base, aOrig.base, flags)
    else:
      result = typeRel(c, f.base, aOrig, flags + {trNoCovariance})
    subtypeCheck()
  of tyLent:
    if aOrig.kind == f.kind:
      result = typeRel(c, f.base, aOrig.base, flags)
    else:
      result = typeRel(c, f.base, aOrig, flags + {trNoCovariance})
    subtypeCheck()
  of tyArray:
    a = reduceToBase(a)
    if a.kind == tyArray:
      var fRange = f.indexType
      var aRange = a.indexType
      if fRange.kind in {tyGenericParam, tyAnything}:
        var prev = idTableGet(c.bindings, fRange)
        if prev == nil:
          if typeRel(c, fRange, aRange) == isNone:
            return isNone
          put(c, fRange, a.indexType)
          fRange = a
        else:
          fRange = prev
      let ff = f[1].skipTypes({tyTypeDesc})
      # This typeDesc rule is wrong, see bug #7331
      let aa = a[1] #.skipTypes({tyTypeDesc})

      if f.indexType.kind != tyGenericParam and aa.kind == tyEmpty:
        result = isGeneric
      else:
        result = typeRel(c, ff, aa, flags)
      if result < isGeneric:
        if nimEnableCovariance and
           trNoCovariance notin flags and
           ff.kind == aa.kind and
           isCovariantPtr(c, ff, aa):
          result = isSubtype
        else:
          return isNone

      if fRange.rangeHasUnresolvedStatic:
        if aRange.kind in {tyGenericParam} and aRange.reduceToBase() == aRange:
          return
        return inferStaticsInRange(c, fRange, a)
      elif c.c.matchedConcept != nil and aRange.rangeHasUnresolvedStatic:
        return inferStaticsInRange(c, aRange, f)
      elif result == isGeneric and concreteType(c, aa, ff) == nil:
        return isNone
      else:
        if lengthOrd(c.c.config, fRange) != lengthOrd(c.c.config, aRange):
          result = isNone
  of tyOpenArray, tyVarargs:
    # varargs[untyped] is special too but handled earlier. So we only need to
    # handle varargs[typed]:
    if f.kind == tyVarargs:
      if tfVarargs in a.flags:
        return typeRel(c, f.base, a.elementType, flags)
      if f[0].kind == tyTyped: return

    template matchArrayOrSeq(aBase: PType) =
      let ff = f.base
      let aa = aBase
      let baseRel = typeRel(c, ff, aa, flags)
      if baseRel >= isGeneric:
        result = isConvertible
      elif nimEnableCovariance and
           trNoCovariance notin flags and
           ff.kind == aa.kind and
           isCovariantPtr(c, ff, aa):
        result = isConvertible

    case a.kind
    of tyOpenArray, tyVarargs:
      result = typeRel(c, base(f), base(a), flags)
      if result < isGeneric: result = isNone
    of tyArray:
      if (f[0].kind != tyGenericParam) and (a.elementType.kind == tyEmpty):
        return isSubtype
      matchArrayOrSeq(a.elementType)
    of tySequence:
      if (f[0].kind != tyGenericParam) and (a.elementType.kind == tyEmpty):
        return isConvertible
      matchArrayOrSeq(a.elementType)
    of tyString:
      if f.kind == tyOpenArray:
        if f[0].kind == tyChar:
          result = isConvertible
        elif f[0].kind == tyGenericParam and a.len > 0 and
            typeRel(c, base(f), base(a), flags) >= isGeneric:
          result = isConvertible
    else: discard
  of tySequence, tyUncheckedArray:
    if a.kind == f.kind:
      if (f[0].kind != tyGenericParam) and (a.elementType.kind == tyEmpty):
        result = isSubtype
      else:
        let ff = f[0]
        let aa = a.elementType
        result = typeRel(c, ff, aa, flags)
        if result < isGeneric:
          if nimEnableCovariance and
             trNoCovariance notin flags and
             ff.kind == aa.kind and
             isCovariantPtr(c, ff, aa):
            result = isSubtype
          else:
            result = isNone
    elif a.kind == tyNil:
      result = isNone
  of tyOrdinal:
    if isOrdinalType(a):
      var x = if a.kind == tyOrdinal: a.elementType else: a
      if f[0].kind == tyNone:
        result = isGeneric
      else:
        result = typeRel(c, f[0], x, flags)
        if result < isGeneric: result = isNone
    elif a.kind == tyGenericParam:
      result = isGeneric
  of tyForward:
    #internalError("forward type in typeRel()")
    result = isNone
  of tyNil:
    skipOwned(a)
    if a.kind == f.kind: result = isEqual
  of tyTuple:
    if a.kind == tyTuple: result = recordRel(c, f, a, flags)
  of tyObject:
    let effectiveArgType = if useTypeLoweringRuleInTypeClass:
        a
      else:
        reduceToBase(a)
    if effectiveArgType.kind == tyObject:
      if sameObjectTypes(f, effectiveArgType):
        c.inheritancePenalty = 0
        result = isEqual
        # elif tfHasMeta in f.flags: result = recordRel(c, f, a)
      elif trIsOutParam notin flags:
        c.inheritancePenalty = isObjectSubtype(c, effectiveArgType, f, nil)
        if c.inheritancePenalty > 0:
          result = isSubtype
  of tyDistinct:
    a = a.skipTypes({tyOwned, tyGenericInst, tyRange})
    if a.kind == tyDistinct:
      if sameDistinctTypes(f, a): result = isEqual
      #elif f.base.kind == tyAnything: result = isGeneric  # issue 4435
      elif c.coerceDistincts: result = typeRel(c, f.base, a, flags)
    elif c.coerceDistincts: result = typeRel(c, f.base, a, flags)
  of tySet:
    if a.kind == tySet:
      if f[0].kind != tyGenericParam and a[0].kind == tyEmpty:
        result = isSubtype
      else:
        result = typeRel(c, f[0], a[0], flags)
        if result < isGeneric:
          if result <= isConvertible:
            result = isNone
          elif tfIsConstructor notin a.flags:
            # set constructors are a bit special...
            result = isNone
  of tyPtr, tyRef:
    a = reduceToBase(a)
    if a.kind == f.kind:
      # ptr[R, T] can be passed to ptr[T], but not the other way round:
      if a.len < f.len: return isNone
      for i in 0..<f.len-1:
        if typeRel(c, f[i], a[i], flags) == isNone: return isNone
      result = typeRel(c, f.elementType, a.elementType, flags + {trNoCovariance})
      subtypeCheck()
      if result <= isIntConv: result = isNone
      elif tfNotNil in f.flags and tfNotNil notin a.flags:
        result = isNilConversion
    elif a.kind == tyNil: result = f.allowsNil
    else: discard
  of tyProc:
    skipOwned(a)
    result = procTypeRel(c, f, a)
    if result != isNone and tfNotNil in f.flags and tfNotNil notin a.flags:
      result = isNilConversion
  of tyOwned:
    case a.kind
    of tyOwned:
      result = typeRel(c, skipModifier(f), skipModifier(a), flags)
    of tyNil: result = f.allowsNil
    else: discard
  of tyPointer:
    skipOwned(a)
    case a.kind
    of tyPointer:
      if tfNotNil in f.flags and tfNotNil notin a.flags:
        result = isNilConversion
      else:
        result = isEqual
    of tyNil: result = f.allowsNil
    of tyProc:
      if isDefined(c.c.config, "nimPreviewProcConversion"):
        result = isNone
      else:
        if a.callConv != ccClosure: result = isConvertible
    of tyPtr:
      # 'pointer' is NOT compatible to regionized pointers
      # so 'dealloc(regionPtr)' fails:
      if a.len == 1: result = isConvertible
    of tyCstring: result = isConvertible
    else: discard
  of tyString:
    case a.kind
    of tyString: result = isEqual
    of tyNil: result = isNone
    else: discard
  of tyCstring:
    # conversion from string to cstring is automatic:
    case a.kind
    of tyCstring:
      if tfNotNil in f.flags and tfNotNil notin a.flags:
        result = isNilConversion
      else:
        result = isEqual
    of tyNil: result = f.allowsNil
    of tyString: result = isConvertible
    of tyPtr:
      if isDefined(c.c.config, "nimPreviewCstringConversion"):
        result = isNone
      else:
        if a.len == 1:
          let pointsTo = a[0].skipTypes(abstractInst)
          if pointsTo.kind == tyChar: result = isConvertible
          elif pointsTo.kind == tyUncheckedArray and pointsTo[0].kind == tyChar:
            result = isConvertible
          elif pointsTo.kind == tyArray and firstOrd(nil, pointsTo[0]) == 0 and
              skipTypes(pointsTo[0], {tyRange}).kind in {tyInt..tyInt64} and
              pointsTo[1].kind == tyChar:
            result = isConvertible
    else: discard
  of tyEmpty, tyVoid:
    if a.kind == f.kind: result = isEqual
  of tyAlias, tySink:
    result = typeRel(c, skipModifier(f), a, flags)
  of tyIterable:
    if a.kind == tyIterable:
      if f.len == 1:
        result = typeRel(c, skipModifier(f), skipModifier(a), flags)
      else:
        # f.len = 3, for some reason
        result = isGeneric
    else:
      result = isNone
  of tyGenericInst:
    var prev = idTableGet(c.bindings, f)
    let origF = f
    var f = if prev == nil: f else: prev

    let deptha = a.genericAliasDepth()
    let depthf = f.genericAliasDepth()
    let skipBoth = deptha == depthf and (a.len > 0 and f.len > 0 and a.base != f.base)

    let roota = if skipBoth or deptha > depthf: a.skipGenericAlias else: a
    let rootf = if skipBoth or depthf > deptha: f.skipGenericAlias else: f

    if a.kind == tyGenericInst:
      if roota.base == rootf.base:
        let nextFlags = flags + {trNoCovariance}
        var hasCovariance = false
        # YYYY
        result = isEqual

        for i in 1..<rootf.len-1:
          let ff = rootf[i]
          let aa = roota[i]
          let res = typeRel(c, ff, aa, nextFlags)
          if res != isNone and res != isEqual: result = isGeneric
          if res notin {isEqual, isGeneric}:
            if trNoCovariance notin flags and ff.kind == aa.kind:
              let paramFlags = rootf.base[i-1].flags
              hasCovariance =
                if tfCovariant in paramFlags:
                  if tfWeakCovariant in paramFlags:
                    isCovariantPtr(c, ff, aa)
                  else:
                    ff.kind notin {tyRef, tyPtr} and res == isSubtype
                else:
                  tfContravariant in paramFlags and
                    typeRel(c, aa, ff, flags) == isSubtype
              if hasCovariance:
                continue

            return isNone
        if prev == nil: put(c, f, a)
      else:
        let fKind = rootf.last.kind
        if fKind in {tyAnd, tyOr}:
          result = typeRel(c, last(f), a, flags)
          if result != isNone: put(c, f, a)
          return

        var aAsObject = roota.last

        if fKind in {tyRef, tyPtr}:
          if aAsObject.kind == tyObject:
            # bug #7600, tyObject cannot be passed
            # as argument to tyRef/tyPtr
            return isNone
          elif aAsObject.kind == fKind:
            aAsObject = aAsObject.base

        if aAsObject.kind == tyObject and trIsOutParam notin flags:
          let baseType = aAsObject.base
          if baseType != nil:
            inc c.inheritancePenalty, 1 + int(c.inheritancePenalty < 0)
            let ret = typeRel(c, f, baseType, flags)
            return if ret in {isEqual,isGeneric}: isSubtype else: ret

        result = isNone
    else:
      assert last(origF) != nil
      result = typeRel(c, last(origF), a, flags)
      if result != isNone and a.kind != tyNil:
        put(c, f, a)
  of tyGenericBody:
    considerPreviousT:
      if a == f or a.kind == tyGenericInst and a.skipGenericAlias[0] == f:
        bindingRet isGeneric
      let ff = last(f)
      if ff != nil:
        result = typeRel(c, ff, a, flags)
  of tyGenericInvocation:
    var x = a.skipGenericAlias
    if x.kind == tyGenericParam and x.len > 0:
      x = x.last
    let concpt = f[0].skipTypes({tyGenericBody})
    var preventHack = concpt.kind == tyConcept
    if x.kind == tyOwned and f[0].kind != tyOwned:
      preventHack = true
      x = x.last
    # XXX: This is very hacky. It should be moved back into liftTypeParam
    if x.kind in {tyGenericInst, tyArray} and
      c.calleeSym != nil and
      c.calleeSym.kind in {skProc, skFunc} and c.call != nil and not preventHack:
      let inst = prepareMetatypeForSigmatch(c.c, c.bindings, c.call.info, f)
      return typeRel(c, inst, a, flags)

    if x.kind == tyGenericInvocation:
      if f[0] == x[0]:
        for i in 1..<f.len:
          # Handle when checking against a generic that isn't fully instantiated
          if i >= x.len: return
          let tr = typeRel(c, f[i], x[i], flags)
          if tr <= isSubtype: return
        result = isGeneric
    elif x.kind == tyGenericInst and f[0] == x[0] and
          x.len - 1 == f.len:
      for i in 1..<f.len:
        if x[i].kind == tyGenericParam:
          internalError(c.c.graph.config, "wrong instantiated type!")
        elif typeRel(c, f[i], x[i], flags) <= isSubtype:
          # Workaround for regression #4589
          if f[i].kind != tyTypeDesc: return
      result = isGeneric
    elif x.kind == tyGenericInst and concpt.kind == tyConcept:
      result = if concepts.conceptMatch(c.c, concpt, x, c.bindings, f): isGeneric
               else: isNone
    else:
      let genericBody = f[0]
      var askip = skippedNone
      var fskip = skippedNone
      let aobj = x.skipToObject(askip)
      let fobj = genericBody.last.skipToObject(fskip)
      result = typeRel(c, genericBody, x, flags)
      if result != isNone:
        # see tests/generics/tgeneric3.nim for an example that triggers this
        # piece of code:
        #
        # proc internalFind[T,D](n: PNode[T,D], key: T): ref TItem[T,D]
        # proc internalPut[T,D](ANode: ref TNode[T,D], Akey: T, Avalue: D,
        #                       Oldvalue: var D): ref TNode[T,D]
        # var root = internalPut[int, int](nil, 312, 312, oldvalue)
        # var it1 = internalFind(root, 312) # cannot instantiate: 'D'
        #
        # we steal the generic parameters from the tyGenericBody:
        for i in 1..<f.len:
          let x = idTableGet(c.bindings, genericBody[i-1])
          if x == nil:
            discard "maybe fine (for e.g. a==tyNil)"
          elif x.kind in {tyGenericInvocation, tyGenericParam}:
            internalError(c.c.graph.config, "wrong instantiated type!")
          else:
            let key = f[i]
            let old = idTableGet(c.bindings, key)
            if old == nil:
              put(c, key, x)
            elif typeRel(c, old, x, flags + {trDontBind}) == isNone:
              return isNone
      var depth = -1
      if fobj != nil and aobj != nil and askip == fskip:
        depth = isObjectSubtype(c, aobj, fobj, f)

      if result == isNone:
        # Here object inheriting from generic/specialized generic object
        # crossing path with metatypes/aliases, so we need to separate them
        # by checking sym.id
        let genericSubtype = isGenericSubtype(c, x, f, depth, f)
        if not (genericSubtype and aobj.sym.id != fobj.sym.id) and aOrig.kind != tyGenericBody:
          depth = -1

      if depth >= 0:
        inc c.inheritancePenalty, depth + int(c.inheritancePenalty < 0)
        # bug #4863: We still need to bind generic alias crap, so
        # we cannot return immediately:
        result = if depth == 0: isGeneric else: isSubtype
  of tyAnd:
    considerPreviousT:
      result = isEqual
      for branch in f.kids:
        let x = typeRel(c, branch, aOrig, flags)
        if x < isSubtype: return isNone
        # 'and' implies minimum matching result:
        if x < result: result = x
      if result > isGeneric: result = isGeneric
      bindingRet result
  of tyOr:
    considerPreviousT:
      result = isNone
      let oldInheritancePenalty = c.inheritancePenalty
      var minInheritance = maxInheritancePenalty
      for branch in f.kids:
        c.inheritancePenalty = -1
        let x = typeRel(c, branch, aOrig, flags)
        if x >= result:
          if  c.inheritancePenalty > -1:
            minInheritance = min(minInheritance, c.inheritancePenalty)
          result = x
      if result >= isIntConv:
        if minInheritance < maxInheritancePenalty:
          c.inheritancePenalty = oldInheritancePenalty + minInheritance
        if result > isGeneric: result = isGeneric
        bindingRet result
      else:
        result = isNone
  of tyNot:
    considerPreviousT:
      if typeRel(c, f.elementType, aOrig, flags) != isNone:
        return isNone

      bindingRet isGeneric
  of tyAnything:
    considerPreviousT:
      var concrete = concreteType(c, a)
      if concrete != nil and doBind:
        put(c, f, concrete)
      return isGeneric
  of tyBuiltInTypeClass:
    considerPreviousT:
      let target = f.genericHead
      let targetKind = target.kind
      var effectiveArgType = reduceToBase(a)
      effectiveArgType = effectiveArgType.skipTypes({tyBuiltInTypeClass})
      if targetKind == effectiveArgType.kind:
        if effectiveArgType.isEmptyContainer:
          return isNone
        if targetKind == tyProc:
          if target.flags * {tfIterator} != effectiveArgType.flags * {tfIterator}:
            return isNone
          if tfExplicitCallConv in target.flags and
              target.callConv != effectiveArgType.callConv:
            return isNone
        if doBind: put(c, f, a)
        return isGeneric
      else:
        return isNone
  of tyUserTypeClassInst, tyUserTypeClass:
    if f.isResolvedUserTypeClass:
      result = typeRel(c, f.last, a, flags)
    else:
      considerPreviousT:
        if aOrig == f: return isEqual
        var matched = matchUserTypeClass(c, f, aOrig)
        if matched != nil:
          bindConcreteTypeToUserTypeClass(matched, a)
          if doBind: put(c, f, matched)
          result = isGeneric
        elif a.len > 0 and a.last == f:
          # Needed for checking `Y` == `Addable` in the following
          #[
            type
              Addable = concept a, type A
                a + a is A
              MyType[T: Addable; Y: static T] = object
          ]#
          result = isGeneric
        else:
          result = isNone
  of tyConcept:
    result = if concepts.conceptMatch(c.c, f, a, c.bindings, nil): isGeneric
             else: isNone
  of tyCompositeTypeClass:
    considerPreviousT:
      let roota = a.skipGenericAlias
      let rootf = f.last.skipGenericAlias
      if a.kind == tyGenericInst and roota.base == rootf.base:
        for i in 1..<rootf.len-1:
          let ff = rootf[i]
          let aa = roota[i]
          result = typeRel(c, ff, aa, flags)
          if result == isNone: return
          if ff.kind == tyRange and result != isEqual: return isNone
      else:
        result = typeRel(c, rootf.last, a, flags)
      if result != isNone:
        put(c, f, a)
        result = isGeneric
  of tyGenericParam:
    let doBindGP = doBind or trBindGenericParam in flags
    var x = idTableGet(c.bindings, f)
    if x == nil:
      if c.callee.kind == tyGenericBody and not c.typedescMatched:
        # XXX: The fact that generic types currently use tyGenericParam for
        # their parameters is really a misnomer. tyGenericParam means "match
        # any value" and what we need is "match any type", which can be encoded
        # by a tyTypeDesc params. Unfortunately, this requires more substantial
        # changes in semtypinst and elsewhere.
        if tfWildcard in a.flags:
          result = isGeneric
        elif a.kind == tyTypeDesc:
          if f.len == 0:
            result = isGeneric
          else:
            internalAssert c.c.graph.config, a.len > 0
            c.typedescMatched = true
            var aa = a
            while aa.kind in {tyTypeDesc, tyGenericParam} and aa.len > 0:
              aa = last(aa)
            if aa.kind in {tyGenericParam} + tyTypeClasses:
              # If the constraint is a genericParam or typeClass this isGeneric
              return isGeneric
            result = typeRel(c, f.base, aa, flags)
            if result > isGeneric: result = isGeneric
        elif c.isNoCall:
          if doBindGP:
            let concrete = concreteType(c, a, f)
            if concrete == nil: return isNone
            put(c, f, concrete)
          result = isGeneric
        else:
          result = isNone
      else:
        # check if 'T' has a constraint as in 'proc p[T: Constraint](x: T)'
        if f.len > 0 and f[0].kind != tyNone:
          result = typeRel(c, f[0], a, flags + {trDontBind, trBindGenericParam})
          if doBindGP and result notin {isNone, isGeneric}:
            let concrete = concreteType(c, a, f)
            if concrete == nil: return isNone
            put(c, f, concrete)
          if result in {isEqual, isSubtype}:
            result = isGeneric
        elif a.kind == tyTypeDesc:
          # somewhat special typing rule, the following is illegal:
          # proc p[T](x: T)
          # p(int)
          result = isNone
        else:
          result = isGeneric

      if result == isGeneric:
        var concrete = a
        if tfWildcard in a.flags:
          a.sym.transitionGenericParamToType()
          a.flags.excl tfWildcard
        elif doBind:
          # careful: `trDontDont` (set by `checkGeneric`) is not always respected in this call graph.
          # typRel having two different modes (binding and non-binding) can make things harder to
          # reason about and maintain. Refactoring typeRel to not be responsible for setting, or
          # at least validating, bindings can have multiple benefits. This is debatable. I'm not 100% sure.
          # A design that allows a proper complexity analysis of types like `tyOr` would be ideal.
          concrete = concreteType(c, a, f)
          if concrete == nil:
            return isNone
        if doBindGP:
          put(c, f, concrete)
      elif result > isGeneric:
        result = isGeneric
    elif a.kind == tyEmpty:
      result = isGeneric
    elif x.kind == tyGenericParam:
      result = isGeneric
    else:
      # This is the bound type - can't benifit from these tallies
      let
        inheritancePenaltyOld = c.inheritancePenalty
      result = typeRel(c, x, a, flags) # check if it fits
      c.inheritancePenalty = inheritancePenaltyOld
      if result > isGeneric: result = isGeneric
  of tyStatic:
    let prev = idTableGet(c.bindings, f)
    if prev == nil:
      if aOrig.kind == tyStatic:
        if c.c.inGenericContext > 0 and aOrig.n == nil and not c.isNoCall:
          # don't match unresolved static value to static param to avoid
          # faulty instantiations in calls in generic bodies
          # but not for generic invocations as they only check constraints
          result = isNone
        elif f.base.kind notin {tyNone, tyGenericParam}:
          result = typeRel(c, f.base, a, flags)
          if result != isNone and f.n != nil:
            var r = tryResolvingStaticExpr(c, f.n)
            if r == nil: r = f.n
            if not exprStructuralEquivalent(r, aOrig.n) and
                not (aOrig.n.kind == nkIntLit and
                  inferStaticParam(c, r, aOrig.n.intVal)):
              result = isNone
        elif f.base.kind == tyGenericParam:
          # Handling things like `type A[T; Y: static T] = object`
          if f.base.len > 0: # There is a constraint, handle it
            result = typeRel(c, f.base.last, a, flags)
          else:
            # No constraint
            if tfGenericTypeParam in f.flags:
              result = isGeneric
            else:
              # for things like `proc fun[T](a: static[T])`
              result = typeRel(c, f.base, a, flags)
        else:
          result = isGeneric
        if result != isNone: put(c, f, aOrig)
      elif aOrig.n != nil and aOrig.n.typ != nil:
        result = if f.base.kind != tyNone:
                   typeRel(c, f.last, aOrig.n.typ, flags)
                 else: isGeneric
        if result != isNone:
          var boundType = newTypeS(tyStatic, c.c, aOrig.n.typ)
          boundType.n = aOrig.n
          put(c, f, boundType)
      else:
        result = isNone
    elif prev.kind == tyStatic:
      if aOrig.kind == tyStatic:
        result = typeRel(c, prev.last, a, flags)
        if result != isNone and prev.n != nil:
          if not exprStructuralEquivalent(prev.n, aOrig.n):
            result = isNone
      else: result = isNone
    else:
      # XXX endless recursion?
      #result = typeRel(c, prev, aOrig, flags)
      result = isNone
  of tyInferred:
    let prev = f.previouslyInferred
    if prev != nil:
      result = typeRel(c, prev, a, flags)
    else:
      result = typeRel(c, f.base, a, flags)
      if result != isNone:
        c.inferredTypes.add f
        f.add a
  of tyTypeDesc:
    var prev = idTableGet(c.bindings, f)
    if prev == nil:
      # proc foo(T: typedesc, x: T)
      # when `f` is an unresolved typedesc, `a` could be any
      # type, so we should not perform this check earlier
      if c.c.inGenericContext > 0 and a.containsUnresolvedType:
        # generic type bodies can sometimes compile call expressions
        # prevent unresolved generic parameters from being passed to procs as
        # typedesc parameters
        result = isNone
      elif a.kind != tyTypeDesc:
        if a.kind == tyGenericParam and tfWildcard in a.flags:
          # TODO: prevent `a` from matching as a wildcard again
          result = isGeneric
        else:
          result = isNone
      elif f.base.kind == tyNone:
        result = isGeneric
      else:
        result = typeRel(c, f.base, a.base, flags)

      if result != isNone:
        put(c, f, a)
    else:
      if tfUnresolved in f.flags:
        result = typeRel(c, prev.base, a, flags)
      elif a.kind == tyTypeDesc:
        result = typeRel(c, prev.base, a.base, flags)
      else:
        result = isNone
  of tyTyped:
    if aOrig != nil:
      put(c, f, aOrig)
    result = isGeneric
  of tyError:
    result = isEqual
  of tyFromExpr:
    # fix the expression, so it contains the already instantiated types
    if f.n == nil or f.n.kind == nkEmpty: return isGeneric
    if c.c.inGenericContext > 0:
      # need to delay until instantiation
      # also prevent infinite recursion below
      return isNone
    inc c.c.inGenericContext # to generate tyFromExpr again if unresolved
    # use prepareNode for consistency with other tyFromExpr in semtypinst:
    let instantiated = prepareTypesInBody(c.c, c.bindings, f.n)
    let reevaluated = c.c.semExpr(c.c, instantiated).typ
    dec c.c.inGenericContext
    case reevaluated.kind
    of tyFromExpr:
      # not resolved
      result = isNone
    of tyTypeDesc:
      result = typeRel(c, a, reevaluated.base, flags)
    of tyStatic:
      result = typeRel(c, a, reevaluated.base, flags)
      if result != isNone and reevaluated.n != nil:
        if not exprStructuralEquivalent(aOrig.n, reevaluated.n):
          result = isNone
    else:
      # bug #14136: other types are just like 'tyStatic' here:
      result = typeRel(c, a, reevaluated, flags)
      if result != isNone and reevaluated.n != nil:
        if not exprStructuralEquivalent(aOrig.n, reevaluated.n):
          result = isNone
  of tyNone:
    if a.kind == tyNone: result = isEqual
  else:
    internalError c.c.graph.config, " unknown type kind " & $f.kind

when false:
  var nowDebug = false
  var dbgCount = 0

  proc typeRel(c: var TCandidate, f, aOrig: PType,
              flags: TTypeRelFlags = {}): TTypeRelation =
    if nowDebug:
      echo f, " <- ", aOrig
      inc dbgCount
      if dbgCount == 2:
        writeStackTrace()
    result = typeRelImpl(c, f, aOrig, flags)
    if nowDebug:
      echo f, " <- ", aOrig, " res ", result

proc cmpTypes*(c: PContext, f, a: PType): TTypeRelation =
  var m = newCandidate(c, f)
  result = typeRel(m, f, a)

proc getInstantiatedType(c: PContext, arg: PNode, m: TCandidate,
                         f: PType): PType =
  result = idTableGet(m.bindings, f)
  if result == nil:
    result = generateTypeInstance(c, m.bindings, arg, f)
  if result == nil:
    internalError(c.graph.config, arg.info, "getInstantiatedType")
    result = errorType(c)

proc implicitConv(kind: TNodeKind, f: PType, arg: PNode, m: TCandidate,
                  c: PContext): PNode =
  result = newNodeI(kind, arg.info)
  if containsGenericType(f):
    if not m.matchedErrorType:
      result.typ = getInstantiatedType(c, arg, m, f).skipTypes({tySink})
    else:
      result.typ = errorType(c)
  else:
    result.typ = f.skipTypes({tySink})
  # keep varness
  if arg.typ != nil and arg.typ.kind == tyVar:
    result.typ = toVar(result.typ, tyVar, c.idgen)
  else:
    result.typ = result.typ.skipTypes({tyVar})

  if result.typ == nil: internalError(c.graph.config, arg.info, "implicitConv")
  result.add c.graph.emptyNode
  if arg.typ != nil and arg.typ.kind == tyLent:
    let a = newNodeIT(nkHiddenDeref, arg.info, arg.typ.elementType)
    a.add arg
    result.add a
  else:
    result.add arg

proc isLValue(c: PContext; n: PNode, isOutParam = false): bool {.inline.} =
  let aa = isAssignable(nil, n)
  case aa
  of arLValue, arLocalLValue, arStrange:
    result = true
  of arDiscriminant:
    result = c.inUncheckedAssignSection > 0
  of arAddressableConst:
    let sym = getRoot(n)
    result = strictDefs in c.features and sym != nil and sym.kind == skLet and isOutParam
  else:
    result = false

proc userConvMatch(c: PContext, m: var TCandidate, f, a: PType,
                   arg: PNode): PNode =
  result = nil
  for i in 0..<c.converters.len:
    var src = c.converters[i].typ.firstParamType
    var dest = c.converters[i].typ.returnType
    # for generic type converters we need to check 'src <- a' before
    # 'f <- dest' in order to not break the unification:
    # see tests/tgenericconverter:
    let srca = typeRel(m, src, a)
    if srca notin {isEqual, isGeneric, isSubtype}: continue

    # What's done below matches the logic in ``matchesAux``
    let constraint = c.converters[i].typ.n[1].sym.constraint
    if not constraint.isNil and not matchNodeKinds(constraint, arg):
      continue
    if src.kind in {tyVar, tyLent} and not isLValue(c, arg):
      continue

    let destIsGeneric = containsGenericType(dest)
    if destIsGeneric:
      dest = generateTypeInstance(c, m.bindings, arg, dest)
    let fdest = typeRel(m, f, dest)
    if fdest in {isEqual, isGeneric} and not (dest.kind == tyLent and f.kind in {tyVar}):
      markUsed(c, arg.info, c.converters[i])
      var s = newSymNode(c.converters[i])
      s.typ = c.converters[i].typ
      s.info = arg.info
      result = newNodeIT(nkHiddenCallConv, arg.info, dest)
      result.add s
      # We build the call expression by ourselves in order to avoid passing this
      # expression trough the semantic check phase once again so let's make sure
      # it is correct
      var param: PNode = nil
      if srca == isSubtype:
        param = implicitConv(nkHiddenSubConv, src, copyTree(arg), m, c)
      elif src.kind in {tyVar}:
        # Analyse the converter return type.
        param = newNodeIT(nkHiddenAddr, arg.info, s.typ.firstParamType)
        param.add copyTree(arg)
      else:
        param = copyTree(arg)
      result.add param

      if dest.kind in {tyVar, tyLent}:
        dest.flags.incl tfVarIsPtr
        result = newDeref(result)

      inc(m.convMatches)
      if not m.genericConverter:
        m.genericConverter = srca == isGeneric or destIsGeneric
      return result

proc localConvMatch(c: PContext, m: var TCandidate, f, a: PType,
                    arg: PNode): PNode =
  # arg.typ can be nil in 'suggest':
  if isNil(arg.typ): return nil

  # sem'checking for 'echo' needs to be re-entrant:
  # XXX we will revisit this issue after 0.10.2 is released
  if f == arg.typ and arg.kind == nkHiddenStdConv: return arg

  var call = newNodeI(nkCall, arg.info)
  call.add(f.n.copyTree)
  call.add(arg.copyTree)
  # XXX: This would be much nicer if we don't use `semTryExpr` and
  # instead we directly search for overloads with `resolveOverloads`:
  result = c.semTryExpr(c, call, {efNoSem2Check})

  if result != nil:
    if result.typ == nil: return nil
    # bug #13378, ensure we produce a real generic instantiation:
    result = c.semExpr(c, call, {efNoSem2Check})
    # resulting type must be consistent with the other arguments:
    var r = typeRel(m, f[0], result.typ)
    if r < isGeneric: return nil
    if result.kind == nkCall: result.transitionSonsKind(nkHiddenCallConv)
    inc(m.convMatches)
    if r == isGeneric:
      result.typ = getInstantiatedType(c, arg, m, base(f))
    m.baseTypeMatch = true

proc incMatches(m: var TCandidate; r: TTypeRelation; convMatch = 1) =
  case r
  of isConvertible, isIntConv: inc(m.convMatches, convMatch)
  of isSubtype, isSubrange: inc(m.subtypeMatches)
  of isGeneric, isInferred, isBothMetaConvertible: inc(m.genericMatches)
  of isFromIntLit: inc(m.intConvMatches, 256)
  of isInferredConvertible:
    inc(m.convMatches)
  of isEqual: inc(m.exactMatches)
  of isNone: discard

template matchesVoidProc(t: PType): bool =
  (t.kind == tyProc and t.len == 1 and t.returnType == nil) or
    (t.kind == tyBuiltInTypeClass and t.elementType.kind == tyProc)

proc paramTypesMatchAux(m: var TCandidate, f, a: PType,
                        argSemantized, argOrig: PNode): PNode =
  result = nil
  var
    fMaybeStatic = f.skipTypes({tyDistinct})
    arg = argSemantized
    a = a
    c = m.c
  if tfHasStatic in fMaybeStatic.flags:
    # XXX: When implicit statics are the default
    # this will be done earlier - we just have to
    # make sure that static types enter here

    # Zahary: weaken tyGenericParam and call it tyGenericPlaceholder
    # and finally start using tyTypedesc for generic types properly.
    # Araq: This would only shift the problems around, in 'proc p[T](x: T)'
    # the T is NOT a typedesc.
    if a.kind == tyGenericParam and tfWildcard in a.flags:
      a.assignType(f)
      # put(m.bindings, f, a)
      return argSemantized

    if a.kind == tyStatic:
      if m.callee.kind == tyGenericBody and
         a.n == nil and
         tfGenericTypeParam notin a.flags:
        return newNodeIT(nkType, argOrig.info, makeTypeFromExpr(c, arg))
    elif a.kind == tyFromExpr and c.inGenericContext > 0:
      # don't try to evaluate
      discard
    elif arg.kind != nkEmpty:
      var evaluated = c.semTryConstExpr(c, arg)
      if evaluated != nil:
        # Don't build the type in-place because `evaluated` and `arg` may point
        # to the same object and we'd end up creating recursive types (#9255)
        let typ = newTypeS(tyStatic, c, son = evaluated.typ)
        typ.n = evaluated
        arg = copyTree(arg) # fix #12864
        arg.typ = typ
        a = typ
      else:
        if m.callee.kind == tyGenericBody:
          if f.kind == tyStatic and typeRel(m, f.base, a) != isNone:
            result = makeStaticExpr(m.c, arg)
            result.typ.flags.incl tfUnresolved
            result.typ.n = arg
            return

  let oldInheritancePenalty = m.inheritancePenalty
  var r = typeRel(m, f, a)

  # This special typing rule for macros and templates is not documented
  # anywhere and breaks symmetry. It's hard to get rid of though, my
  # custom seqs example fails to compile without this:
  if r != isNone and m.calleeSym != nil and
    m.calleeSym.kind in {skMacro, skTemplate}:
    # XXX: duplicating this is ugly, but we cannot (!) move this
    # directly into typeRel using return-like templates
    incMatches(m, r)
    if f.kind == tyTyped:
      return arg
    elif f.kind == tyTypeDesc:
      return arg
    elif f.kind == tyStatic and arg.typ.n != nil:
      return arg.typ.n
    else:
      return argSemantized # argOrig

  block instantiateGenericRoutine:
    # In the case where the matched value is a generic proc, we need to
    # fully instantiate it and then rerun typeRel to make sure it matches.
    # instantiationCounter is for safety to avoid any infinite loop,
    #  I don't have any example when it is needed.
    # lastBindingCount is used to check whether m.bindings remains the same,
    #  because in that case there is no point in continuing.
    var instantiationCounter = 0
    var lastBindingCount = -1
    while r in {isBothMetaConvertible, isInferred, isInferredConvertible} and
        lastBindingCount != m.bindings.len and
        instantiationCounter < 100:
      lastBindingCount = m.bindings.len
      inc(instantiationCounter)
      if arg.kind in {nkProcDef, nkFuncDef, nkIteratorDef} + nkLambdaKinds:
        result = c.semInferredLambda(c, m.bindings, arg)
      elif arg.kind != nkSym:
        return nil
      elif arg.sym.kind in {skMacro, skTemplate}:
        return nil
      else:
        if arg.sym.ast == nil:
          return nil
        let inferred = c.semGenerateInstance(c, arg.sym, m.bindings, arg.info)
        result = newSymNode(inferred, arg.info)
      arg = result
      r = typeRel(m, f, arg.typ)

  case r
  of isConvertible:
    if f.skipTypes({tyRange}).kind in {tyInt, tyUInt}:
      inc(m.convMatches)
    inc(m.convMatches)
    result = implicitConv(nkHiddenStdConv, f, arg, m, c)
  of isIntConv:
    # I'm too lazy to introduce another ``*matches`` field, so we conflate
    # ``isIntConv`` and ``isIntLit`` here:
    if f.skipTypes({tyRange}).kind notin {tyInt, tyUInt}:
      inc(m.intConvMatches)
    inc(m.intConvMatches)
    result = implicitConv(nkHiddenStdConv, f, arg, m, c)
  of isSubtype:
    inc(m.subtypeMatches)
    if f.kind == tyTypeDesc:
      result = arg
    else:
      result = implicitConv(nkHiddenSubConv, f, arg, m, c)
  of isSubrange:
    inc(m.subtypeMatches)
    if f.kind in {tyVar}:
      result = arg
    else:
      result = implicitConv(nkHiddenStdConv, f, arg, m, c)
  of isInferred:
    # result should be set in above while loop:
    assert result != nil
    inc(m.genericMatches)
  of isInferredConvertible:
    # result should be set in above while loop:
    assert result != nil
    inc(m.convMatches)
    result = implicitConv(nkHiddenStdConv, f, result, m, c)
  of isGeneric:
    inc(m.genericMatches)
    if arg.typ == nil:
      result = arg
    elif skipTypes(arg.typ, abstractVar-{tyTypeDesc}).kind == tyTuple or cmpInheritancePenalty(oldInheritancePenalty, m.inheritancePenalty) > 0:
      result = implicitConv(nkHiddenSubConv, f, arg, m, c)
    elif arg.typ.isEmptyContainer:
      result = arg.copyTree
      result.typ = getInstantiatedType(c, arg, m, f)
    else:
      result = arg
  of isBothMetaConvertible:
    # result should be set in above while loop:
    assert result != nil
    inc(m.convMatches)
    result = arg
  of isFromIntLit:
    # too lazy to introduce another ``*matches`` field, so we conflate
    # ``isIntConv`` and ``isIntLit`` here:
    inc(m.intConvMatches, 256)
    result = implicitConv(nkHiddenStdConv, f, arg, m, c)
  of isEqual:
    inc(m.exactMatches)
    result = arg
    let ff = skipTypes(f, abstractVar-{tyTypeDesc})
    if ff.kind == tyTuple or
      (arg.typ != nil and skipTypes(arg.typ, abstractVar-{tyTypeDesc}).kind == tyTuple):
      result = implicitConv(nkHiddenSubConv, f, arg, m, c)
  of isNone:
    # do not do this in ``typeRel`` as it then can't infer T in ``ref T``:
    if a.kind == tyFromExpr: return nil
    elif a.kind == tyError:
      inc(m.genericMatches)
      m.matchedErrorType = true
      return arg
    elif a.kind == tyVoid and f.matchesVoidProc and argOrig.kind == nkStmtList:
      # lift do blocks without params to lambdas
      # now deprecated
      message(c.config, argOrig.info, warnStmtListLambda)
      let p = c.graph
      let lifted = c.semExpr(c, newProcNode(nkDo, argOrig.info, body = argOrig,
          params = nkFormalParams.newTree(p.emptyNode), name = p.emptyNode, pattern = p.emptyNode,
          genericParams = p.emptyNode, pragmas = p.emptyNode, exceptions = p.emptyNode), {})
      if f.kind == tyBuiltInTypeClass:
        inc m.genericMatches
        put(m, f, lifted.typ)
      inc m.convMatches
      return implicitConv(nkHiddenStdConv, f, lifted, m, c)
    result = userConvMatch(c, m, f, a, arg)
    # check for a base type match, which supports varargs[T] without []
    # constructor in a call:
    if result == nil and f.kind == tyVarargs:
      if f.n != nil:
        # Forward to the varargs converter
        result = localConvMatch(c, m, f, a, arg)
      elif f[0].kind == tyTyped:
        inc m.genericMatches
        result = arg
      else:
        r = typeRel(m, base(f), a)
        case r
        of isGeneric:
          inc(m.convMatches)
          result = copyTree(arg)
          result.typ = getInstantiatedType(c, arg, m, base(f))
          m.baseTypeMatch = true
        of isFromIntLit:
          inc(m.intConvMatches, 256)
          result = implicitConv(nkHiddenStdConv, f[0], arg, m, c)
          m.baseTypeMatch = true
        of isEqual:
          inc(m.convMatches)
          result = copyTree(arg)
          m.baseTypeMatch = true
        of isSubtype: # bug #4799, varargs accepting subtype relation object
          inc(m.subtypeMatches)
          if base(f).kind == tyTypeDesc:
            result = arg
          else:
            result = implicitConv(nkHiddenSubConv, base(f), arg, m, c)
          m.baseTypeMatch = true
        else:
          result = userConvMatch(c, m, base(f), a, arg)
          if result != nil: m.baseTypeMatch = true

proc staticAwareTypeRel(m: var TCandidate, f: PType, arg: var PNode): TTypeRelation =
  if f.kind == tyStatic and f.base.kind == tyProc:
    # The ast of the type does not point to the symbol.
    # Without this we will never resolve a `static proc` with overloads
    let copiedNode = copyNode(arg)
    copiedNode.typ = exactReplica(copiedNode.typ)
    copiedNode.typ.n = arg
    arg = copiedNode
  typeRel(m, f, arg.typ)


proc paramTypesMatch*(m: var TCandidate, f, a: PType,
                      arg, argOrig: PNode): PNode =
  if arg == nil or arg.kind notin nkSymChoices:
    result = paramTypesMatchAux(m, f, a, arg, argOrig)
  else:
    # symbol kinds that don't participate in symchoice type disambiguation:
    let matchSet = {low(TSymKind)..high(TSymKind)} - {skModule, skPackage}

    var best = -1
    result = arg

    var actingF = f
    if f.kind == tyVarargs:
      if m.calleeSym.kind in {skTemplate, skMacro}:
        actingF = f[0]
    if actingF.kind in {tyTyped, tyUntyped}:
      var
        bestScope = -1
        counts = 0
      for i in 0..<arg.len:
        if arg[i].sym.kind in matchSet:
          let thisScope = cmpScopes(m.c, arg[i].sym)
          if thisScope > bestScope:
            best = i
            bestScope = thisScope
            counts = 0
          elif thisScope == bestScope:
            inc counts
      if best == -1:
        result = nil
      elif counts > 0:
        m.genericMatches = 1
        best = -1
    else:
      # CAUTION: The order depends on the used hashing scheme. Thus it is
      # incorrect to simply use the first fitting match. However, to implement
      # this correctly is inefficient. We have to copy `m` here to be able to
      # roll back the side effects of the unification algorithm.
      let c = m.c
      var
        x = newCandidate(c, m.callee)  # potential "best"
        y = newCandidate(c, m.callee)  # potential competitor with x
        z = newCandidate(c, m.callee)  # buffer for copies of m
      x.calleeSym = m.calleeSym
      y.calleeSym = m.calleeSym
      z.calleeSym = m.calleeSym

      for i in 0..<arg.len:
        if arg[i].sym.kind in matchSet:
          copyCandidate(z, m)
          z.callee = arg[i].typ
          if arg[i].sym.kind == skType and z.callee.kind != tyTypeDesc:
            # creating the symchoice with the type sym having typedesc type
            # breaks a lot of stuff, so we make the typedesc type here
            # mirrored from `newSymNodeTypeDesc`
            z.callee = newType(tyTypeDesc, c.idgen, arg[i].sym.owner)
            z.callee.addSonSkipIntLit(arg[i].sym.typ, c.idgen)
          if tfUnresolved in z.callee.flags: continue
          z.calleeSym = arg[i].sym
          z.calleeScope = cmpScopes(m.c, arg[i].sym)
          # XXX this is still all wrong: (T, T) should be 2 generic matches
          # and  (int, int) 2 exact matches, etc. Essentially you cannot call
          # typeRel here and expect things to work!
          let r = staticAwareTypeRel(z, f, arg[i])
          incMatches(z, r, 2)
          if r != isNone:
            z.state = csMatch
            case x.state
            of csEmpty, csNoMatch:
              x = z
              best = i
            of csMatch:
              let cmp = cmpCandidates(x, z, isFormal=false)
              if cmp < 0:
                best = i
                x = z
              elif cmp == 0:
                y = z           # z is as good as x

      if x.state == csEmpty:
        result = nil
      elif y.state == csMatch and cmpCandidates(x, y, isFormal=false) == 0:
        if x.state != csMatch:
          internalError(m.c.graph.config, arg.info, "x.state is not csMatch")
        result = nil
    if best > -1 and result != nil:
      # only one valid interpretation found:
      markUsed(m.c, arg.info, arg[best].sym)
      onUse(arg.info, arg[best].sym)
      result = paramTypesMatchAux(m, f, arg[best].typ, arg[best], argOrig)
  when false:
    if m.calleeSym != nil and m.calleeSym.name.s == "[]":
      echo m.c.config $ arg.info, " for ", m.calleeSym.name.s, " ", m.c.config $ m.calleeSym.info
      writeMatches(m)

proc setSon(father: PNode, at: int, son: PNode) =
  let oldLen = father.len
  if oldLen <= at:
    setLen(father.sons, at + 1)
  father[at] = son
  # insert potential 'void' parameters:
  #for i in oldLen..<at:
  #  father[i] = newNodeIT(nkEmpty, son.info, getSysType(tyVoid))

# we are allowed to modify the calling node in the 'prepare*' procs:
proc prepareOperand(c: PContext; formal: PType; a: PNode): PNode =
  if formal.kind == tyUntyped and formal.len != 1:
    # {tyTypeDesc, tyUntyped, tyTyped, tyError}:
    # a.typ == nil is valid
    result = a
  elif a.typ.isNil:
    if formal.kind == tyIterable:
      let flags = {efDetermineType, efAllowStmt, efWantIterator, efWantIterable}
      result = c.semOperand(c, a, flags)
    else:
      # XXX This is unsound! 'formal' can differ from overloaded routine to
      # overloaded routine!
      let flags = {efDetermineType, efAllowStmt}
                  #if formal.kind == tyIterable: {efDetermineType, efWantIterator}
                  #else: {efDetermineType, efAllowStmt}
                  #elif formal.kind == tyTyped: {efDetermineType, efWantStmt}
                  #else: {efDetermineType}
      result = c.semOperand(c, a, flags)
  else:
    result = a
    considerGenSyms(c, result)
    if result.kind != nkHiddenDeref and result.typ.kind in {tyVar, tyLent} and c.matchedConcept == nil:
      result = newDeref(result)

proc prepareOperand(c: PContext; a: PNode): PNode =
  if a.typ.isNil:
    result = c.semOperand(c, a, {efDetermineType})
  else:
    result = a
    considerGenSyms(c, result)

proc prepareNamedParam(a: PNode; c: PContext) =
  if a[0].kind != nkIdent:
    var info = a[0].info
    a[0] = newIdentNode(considerQuotedIdent(c, a[0]), info)

proc arrayConstr(c: PContext, n: PNode): PType =
  result = newTypeS(tyArray, c)
  rawAddSon(result, makeRangeType(c, 0, 0, n.info))
  addSonSkipIntLit(result, skipTypes(n.typ,
      {tyVar, tyLent, tyOrdinal}), c.idgen)

proc arrayConstr(c: PContext, info: TLineInfo): PType =
  result = newTypeS(tyArray, c)
  rawAddSon(result, makeRangeType(c, 0, -1, info))
  rawAddSon(result, newTypeS(tyEmpty, c)) # needs an empty basetype!

proc incrIndexType(t: PType) =
  assert t.kind == tyArray
  inc t.indexType.n[1].intVal

template isVarargsUntyped(x): untyped =
  x.kind == tyVarargs and x[0].kind == tyUntyped

template isVarargsTyped(x): untyped =
  x.kind == tyVarargs and x[0].kind == tyTyped

proc findFirstArgBlock(m: var TCandidate, n: PNode): int =
  # see https://github.com/nim-lang/RFCs/issues/405
  result = int.high
  for a2 in countdown(n.len-1, 0):
    # checking `nfBlockArg in n[a2].flags` wouldn't work inside templates
    if n[a2].kind != nkStmtList: break
    let formalLast = m.callee.n[m.callee.n.len - (n.len - a2)]
    # parameter has to occupy space (no default value, not void or varargs)
    if formalLast.kind == nkSym and formalLast.sym.ast == nil and
        formalLast.sym.typ.kind notin {tyVoid, tyVarargs}:
      result = a2
    else: break

proc matchesAux(c: PContext, n, nOrig: PNode, m: var TCandidate, marker: var IntSet) =

  template noMatch() =
    c.mergeShadowScope #merge so that we don't have to resem for later overloads
    m.state = csNoMatch
    m.firstMismatch.arg = a
    m.firstMismatch.formal = formal
    return

  template checkConstraint(n: untyped) {.dirty.} =
    if not formal.constraint.isNil and sfCodegenDecl notin formal.flags:
      if matchNodeKinds(formal.constraint, n):
        # better match over other routines with no such restriction:
        inc(m.genericMatches, 100)
      else:
        noMatch()

    if formal.typ.kind in {tyVar}:
      let argConverter = if arg.kind == nkHiddenDeref: arg[0] else: arg
      if argConverter.kind == nkHiddenCallConv:
        if argConverter.typ.kind notin {tyVar}:
          m.firstMismatch.kind = kVarNeeded
          noMatch()
      elif not (isLValue(c, n, isOutParam(formal.typ))):
        m.firstMismatch.kind = kVarNeeded
        noMatch()

  m.state = csMatch # until proven otherwise
  m.firstMismatch = MismatchInfo()
  m.call = newNodeIT(n.kind, n.info, m.callee.base)
  m.call.add n[0]

  var
    a = 1 # iterates over the actual given arguments
    f = if m.callee.kind != tyGenericBody: 1
        else: 0 # iterates over formal parameters
    arg: PNode = nil # current prepared argument
    formalLen = m.callee.n.len
    formal = if formalLen > 1: m.callee.n[1].sym else: nil # current routine parameter
    container: PNode = nil # constructed container
  let firstArgBlock = findFirstArgBlock(m, n)
  while a < n.len:
    c.openShadowScope

    if a >= formalLen-1 and f < formalLen and m.callee.n[f].typ.isVarargsUntyped:
      formal = m.callee.n[f].sym
      incl(marker, formal.position)

      if n[a].kind == nkHiddenStdConv:
        doAssert n[a][0].kind == nkEmpty and
                 n[a][1].kind in {nkBracket, nkArgList}
        # Steal the container and pass it along
        setSon(m.call, formal.position + 1, n[a][1])
      else:
        if container.isNil:
          container = newNodeIT(nkArgList, n[a].info, arrayConstr(c, n.info))
          setSon(m.call, formal.position + 1, container)
        else:
          incrIndexType(container.typ)
        container.add n[a]
    elif n[a].kind == nkExprEqExpr:
      # named param
      m.firstMismatch.kind = kUnknownNamedParam
      # check if m.callee has such a param:
      prepareNamedParam(n[a], c)
      if n[a][0].kind != nkIdent:
        localError(c.config, n[a].info, "named parameter has to be an identifier")
        noMatch()
      formal = getNamedParamFromList(m.callee.n, n[a][0].ident)
      if formal == nil:
        # no error message!
        noMatch()
      if containsOrIncl(marker, formal.position):
        m.firstMismatch.kind = kAlreadyGiven
        # already in namedParams, so no match
        # we used to produce 'errCannotBindXTwice' here but see
        # bug #3836 of why that is not sound (other overload with
        # different parameter names could match later on):
        when false: localError(n[a].info, errCannotBindXTwice, formal.name.s)
        noMatch()
      m.baseTypeMatch = false
      m.typedescMatched = false
      n[a][1] = prepareOperand(c, formal.typ, n[a][1])
      n[a].typ = n[a][1].typ
      arg = paramTypesMatch(m, formal.typ, n[a].typ,
                                n[a][1], n[a][1])
      m.firstMismatch.kind = kTypeMismatch
      if arg == nil:
        noMatch()
      checkConstraint(n[a][1])
      if m.baseTypeMatch:
        #assert(container == nil)
        container = newNodeIT(nkBracket, n[a].info, arrayConstr(c, arg))
        container.add arg
        setSon(m.call, formal.position + 1, container)
        if f != formalLen - 1: container = nil
      else:
        setSon(m.call, formal.position + 1, arg)
      inc f
    else:
      # unnamed param
      if f >= formalLen:
        # too many arguments?
        if tfVarargs in m.callee.flags:
          # is ok... but don't increment any counters...
          # we have no formal here to snoop at:
          n[a] = prepareOperand(c, n[a])
          if skipTypes(n[a].typ, abstractVar-{tyTypeDesc}).kind==tyString:
            m.call.add implicitConv(nkHiddenStdConv,
                  getSysType(c.graph, n[a].info, tyCstring),
                  copyTree(n[a]), m, c)
          else:
            m.call.add copyTree(n[a])
        elif formal != nil and formal.typ.kind == tyVarargs:
          m.firstMismatch.kind = kTypeMismatch
          # beware of the side-effects in 'prepareOperand'! So only do it for
          # varargs matching. See tests/metatype/tstatic_overloading.
          m.baseTypeMatch = false
          m.typedescMatched = false
          incl(marker, formal.position)
          n[a] = prepareOperand(c, formal.typ, n[a])
          arg = paramTypesMatch(m, formal.typ, n[a].typ,
                                    n[a], nOrig[a])
          if arg != nil and m.baseTypeMatch and container != nil:
            container.add arg
            incrIndexType(container.typ)
            checkConstraint(n[a])
          else:
            noMatch()
        else:
          m.firstMismatch.kind = kExtraArg
          noMatch()
      else:
        if m.callee.n[f].kind != nkSym:
          internalError(c.config, n[a].info, "matches")
          noMatch()
        if flexibleOptionalParams in c.features and a >= firstArgBlock:
          f = max(f, m.callee.n.len - (n.len - a))
        formal = m.callee.n[f].sym
        m.firstMismatch.kind = kTypeMismatch
        if containsOrIncl(marker, formal.position) and container.isNil:
          m.firstMismatch.kind = kPositionalAlreadyGiven
          # positional param already in namedParams: (see above remark)
          when false: localError(n[a].info, errCannotBindXTwice, formal.name.s)
          noMatch()

        if formal.typ.isVarargsUntyped:
          if container.isNil:
            container = newNodeIT(nkArgList, n[a].info, arrayConstr(c, n.info))
            setSon(m.call, formal.position + 1, container)
          else:
            incrIndexType(container.typ)
          container.add n[a]
        else:
          m.baseTypeMatch = false
          m.typedescMatched = false
          n[a] = prepareOperand(c, formal.typ, n[a])
          arg = paramTypesMatch(m, formal.typ, n[a].typ,
                                    n[a], nOrig[a])
          if arg == nil:
            noMatch()
          if formal.typ.isVarargsTyped and m.calleeSym.kind in {skTemplate, skMacro}:
            if container.isNil:
              container = newNodeIT(nkBracket, n[a].info, arrayConstr(c, n.info))
              setSon(m.call, formal.position + 1, implicitConv(nkHiddenStdConv, formal.typ, container, m, c))
            else:
              incrIndexType(container.typ)
            container.add n[a]
            f = max(f, formalLen - n.len + a + 1)
          elif m.baseTypeMatch:
            assert formal.typ.kind == tyVarargs
            #assert(container == nil)
            if container.isNil:
              container = newNodeIT(nkBracket, n[a].info, arrayConstr(c, arg))
              container.typ.flags.incl tfVarargs
            else:
              incrIndexType(container.typ)
            container.add arg
            setSon(m.call, formal.position + 1,
                   implicitConv(nkHiddenStdConv, formal.typ, container, m, c))
            #if f != formalLen - 1: container = nil

            # pick the formal from the end, so that 'x, y, varargs, z' works:
            f = max(f, formalLen - n.len + a + 1)
          elif formal.typ.kind != tyVarargs or container == nil:
            setSon(m.call, formal.position + 1, arg)
            inc f
            container = nil
          else:
            # we end up here if the argument can be converted into the varargs
            # formal (e.g. seq[T] -> varargs[T]) but we have already instantiated
            # a container
            #assert arg.kind == nkHiddenStdConv # for 'nim check'
            # this assertion can be off
            localError(c.config, n[a].info, "cannot convert $1 to $2" % [
              typeToString(n[a].typ), typeToString(formal.typ) ])
            noMatch()
        checkConstraint(n[a])

    if m.state == csMatch and not (m.calleeSym != nil and m.calleeSym.kind in {skTemplate, skMacro}):
      c.mergeShadowScope
    else:
      c.closeShadowScope

    inc a
  # for some edge cases (see tdont_return_unowned_from_owned test case)
  m.firstMismatch.arg = a
  m.firstMismatch.formal = formal

proc partialMatch*(c: PContext, n, nOrig: PNode, m: var TCandidate) =
  # for 'suggest' support:
  var marker = initIntSet()
  matchesAux(c, n, nOrig, m, marker)

proc matches*(c: PContext, n, nOrig: PNode, m: var TCandidate) =
  if m.magic in {mArrGet, mArrPut}:
    m.state = csMatch
    m.call = n
    # Note the following doesn't work as it would produce ambiguities.
    # Instead we patch system.nim, see bug #8049.
    when false:
      inc m.genericMatches
      inc m.exactMatches
    return
  # initCandidate may have given csNoMatch if generic params didn't match:
  if m.state == csNoMatch: return
  var marker = initIntSet()
  matchesAux(c, n, nOrig, m, marker)
  if m.state == csNoMatch: return
  # check that every formal parameter got a value:
  for f in 1..<m.callee.n.len:
    let formal = m.callee.n[f].sym
    if not containsOrIncl(marker, formal.position):
      if formal.ast == nil:
        if formal.typ.kind == tyVarargs:
          # For consistency with what happens in `matchesAux` select the
          # container node kind accordingly
          let cnKind = if formal.typ.isVarargsUntyped: nkArgList else: nkBracket
          var container = newNodeIT(cnKind, n.info, arrayConstr(c, n.info))
          setSon(m.call, formal.position + 1,
                 implicitConv(nkHiddenStdConv, formal.typ, container, m, c))
        else:
          # no default value
          m.state = csNoMatch
          m.firstMismatch.kind = kMissingParam
          m.firstMismatch.formal = formal
          break
      else:
        # mirrored with updateDefaultParams:
        if formal.ast.kind == nkEmpty:
          # The default param value is set to empty in `instantiateProcType`
          # when the type of the default expression doesn't match the type
          # of the instantiated proc param:
          pushInfoContext(c.config, m.call.info,
            if m.calleeSym != nil: m.calleeSym.detailedInfo else: "")
          typeMismatch(c.config, formal.ast.info, formal.typ, formal.ast.typ, formal.ast)
          popInfoContext(c.config)
          formal.ast.typ = errorType(c)
        if nfDefaultRefsParam in formal.ast.flags:
          m.call.flags.incl nfDefaultRefsParam
        var defaultValue = copyTree(formal.ast)
        if defaultValue.kind == nkNilLit:
          defaultValue = implicitConv(nkHiddenStdConv, formal.typ, defaultValue, m, c)
        # proc foo(x: T = 0.0)
        # foo()
        if {tfImplicitTypeParam, tfGenericTypeParam} * formal.typ.flags != {}:
          let existing = idTableGet(m.bindings, formal.typ)
          if existing == nil or existing.kind == tyTypeDesc:
            # see bug #11600:
            put(m, formal.typ, defaultValue.typ)
        defaultValue.flags.incl nfDefaultParam
        setSon(m.call, formal.position + 1, defaultValue)
  # forget all inferred types if the overload matching failed
  if m.state == csNoMatch:
    for t in m.inferredTypes:
      if t.len > 1: t.newSons 1

proc argtypeMatches*(c: PContext, f, a: PType, fromHlo = false): bool =
  var m = newCandidate(c, f)
  let res = paramTypesMatch(m, f, a, c.graph.emptyNode, nil)
  #instantiateGenericConverters(c, res, m)
  # XXX this is used by patterns.nim too; I think it's better to not
  # instantiate generic converters for that
  if not fromHlo:
    res != nil
  else:
    # pattern templates do not allow for conversions except from int literal
    res != nil and m.convMatches == 0 and m.intConvMatches in [0, 256]


proc instTypeBoundOp*(c: PContext; dc: PSym; t: PType; info: TLineInfo;
                      op: TTypeAttachedOp; col: int): PSym =
  var m = newCandidate(c, dc.typ)
  if col >= dc.typ.len:
    localError(c.config, info, "cannot instantiate: '" & dc.name.s & "'")
    return nil
  var f = dc.typ[col]

  if op == attachedDeepCopy:
    if f.kind in {tyRef, tyPtr}: f = f.elementType
  else:
    if f.kind in {tyVar}: f = f.elementType
  if typeRel(m, f, t) == isNone:
    result = nil
    localError(c.config, info, "cannot instantiate: '" & dc.name.s & "'")
  else:
    result = c.semGenerateInstance(c, dc, m.bindings, info)
    if op == attachedDeepCopy:
      assert sfFromGeneric in result.flags

include suggest

when not declared(tests):
  template tests(s: untyped) = discard

tests:
  var dummyOwner = newSym(skModule, getIdent("test_module"), nil, unknownLineInfo)

  proc `|` (t1, t2: PType): PType =
    result = newType(tyOr, dummyOwner)
    result.rawAddSon(t1)
    result.rawAddSon(t2)

  proc `&` (t1, t2: PType): PType =
    result = newType(tyAnd, dummyOwner)
    result.rawAddSon(t1)
    result.rawAddSon(t2)

  proc `!` (t: PType): PType =
    result = newType(tyNot, dummyOwner)
    result.rawAddSon(t)

  proc seq(t: PType): PType =
    result = newType(tySequence, dummyOwner)
    result.rawAddSon(t)

  proc array(x: int, t: PType): PType =
    result = newType(tyArray, dummyOwner)

    var n = newNodeI(nkRange, unknownLineInfo)
    n.add newIntNode(nkIntLit, 0)
    n.add newIntNode(nkIntLit, x)
    let range = newType(tyRange, dummyOwner)

    result.rawAddSon(range)
    result.rawAddSon(t)

  suite "type classes":
    let
      int = newType(tyInt, dummyOwner)
      float = newType(tyFloat, dummyOwner)
      string = newType(tyString, dummyOwner)
      ordinal = newType(tyOrdinal, dummyOwner)
      any = newType(tyAnything, dummyOwner)
      number = int | float

    var TFoo = newType(tyObject, dummyOwner)
    TFoo.sym = newSym(skType, getIdent"TFoo", dummyOwner, unknownLineInfo)

    var T1 = newType(tyGenericParam, dummyOwner)
    T1.sym = newSym(skType, getIdent"T1", dummyOwner, unknownLineInfo)
    T1.sym.position = 0

    var T2 = newType(tyGenericParam, dummyOwner)
    T2.sym = newSym(skType, getIdent"T2", dummyOwner, unknownLineInfo)
    T2.sym.position = 1

    setup:
      var c = newCandidate(nil, nil)

    template yes(x, y) =
      test astToStr(x) & " is " & astToStr(y):
        check typeRel(c, y, x) == isGeneric

    template no(x, y) =
      test astToStr(x) & " is not " & astToStr(y):
        check typeRel(c, y, x) == isNone

    yes seq(any), array(10, int) | seq(any)
    # Sure, seq[any] is directly included

    yes seq(int), seq(any)
    yes seq(int), seq(number)
    # Sure, the int sequence is certainly
    # part of the number sequences (and all sequences)

    no seq(any), seq(float)
    # Nope, seq[any] includes types that are not seq[float] (e.g. seq[int])

    yes seq(int|string), seq(any)
    # Sure

    yes seq(int&string), seq(any)
    # Again

    yes seq(int&string), seq(int)
    # A bit more complicated
    # seq[int&string] is not a real type, but it's analogous to
    # seq[Sortable and Iterable], which is certainly a subset of seq[Sortable]

    no seq(int|string), seq(int|float)
    # Nope, seq[string] is not included in not included in
    # the seq[int|float] set

    no seq(!(int|string)), seq(string)
    # A sequence that is neither seq[int] or seq[string]
    # is obviously not seq[string]

    no seq(!int), seq(number)
    # Now your head should start to hurt a bit
    # A sequence that is not seq[int] is not necessarily a number sequence
    # it could well be seq[string] for example

    yes seq(!(int|string)), seq(!string)
    # all sequnece types besides seq[int] and seq[string]
    # are subset of all sequence types that are not seq[string]

    no seq(!(int|string)), seq(!(string|TFoo))
    # Nope, seq[TFoo] is included in the first set, but not in the second

    no seq(!string), seq(!number)
    # Nope, seq[int] in included in the first set, but not in the second

    yes seq(!number), seq(any)
    yes seq(!int), seq(any)
    no seq(any), seq(!any)
    no seq(!int), seq(!any)

    yes int, ordinal
    no  string, ordinal