about summary refs log tree commit diff stats
path: root/config.default.h
blob: 6c43eb2ec6206e72a4a704613ec502c3b9c615d5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
/* (C)opyright MMVI Anselm R. Garbe <garbeam at gmail dot com>
 * See LICENSE file for license details.
 */

#define TAGS \
const char *tags[] = { "1", "2", "3", "4", "5", NULL };

#define DEFMODE			dotile /* dofloat */
#define FLOATSYMBOL		"><>"
#define TILESYMBOL		"[]="

#define FONT			"-*-fixed-medium-r-normal-*-13-*-*-*-*-*-*-*"
#define NORMBGCOLOR		"#333366"
#define NORMFGCOLOR		"#cccccc"
#define SELBGCOLOR		"#666699"
#define SELFGCOLOR		"#eeeeee"
#define STATUSBGCOLOR		"#dddddd"
#define STATUSFGCOLOR		"#222222"

#define MASTER			600		/* per thousand */
#define MODKEY			Mod1Mask
#define SNAP			20		/* pixel */

#define KEYS \
static Key key[] = { \
	/* modifier			key		function	argument */ \
	{ MODKEY|ShiftMask,		XK_Return,	spawn,		{ .cmd = "exec xterm" } }, \
	{ MODKEY,			XK_Tab,		focusnext,	{ 0 } }, \
	{ MODKEY|ShiftMask,		XK_Tab,		focusprev,	{ 0 } }, \
	{ MODKEY,			XK_Return,	zoom,		{ 0 } }, \
	{ MODKEY,			XK_g,		resizemaster,	{ .i = 15 } }, \
	{ MODKEY,			XK_s,		resizemaster,	{ .i = -15 } }, \
	{ MODKEY|ShiftMask,		XK_0,		tag,		{ .i = -1 } }, \
	{ MODKEY|ShiftMask,		XK_1,		tag,		{ .i = 0 } }, \
	{ MODKEY|ShiftMask,		XK_2,		tag,		{ .i = 1 } }, \
	{ MODKEY|ShiftMask,		XK_3,		tag,		{ .i = 2 } }, \
	{ MODKEY|ShiftMask,		XK_4,		tag,		{ .i = 3 } }, \
	{ MODKEY|ShiftMask,		XK_5,		tag,		{ .i = 4 } }, \
	{ MODKEY|ControlMask|ShiftMask,	XK_1,		toggletag,	{ .i = 0 } }, \
	{ MODKEY|ControlMask|ShiftMask,	XK_2,		toggletag,	{ .i = 1 } }, \
	{ MODKEY|ControlMask|ShiftMask,	XK_3,		toggletag,	{ .i = 2 } }, \
	{ MODKEY|ControlMask|ShiftMask,	XK_4,		toggletag,	{ .i = 3 } }, \
	{ MODKEY|ControlMask|ShiftMask,	XK_5,		toggletag,	{ .i = 4 } }, \
	{ MODKEY|ShiftMask,		XK_c,		killclient,	{ 0 } }, \
	{ MODKEY,			XK_space,	togglemode,	{ 0 } }, \
	{ MODKEY|ShiftMask,		XK_space,	togglefloat,	{ 0 } }, \
	{ MODKEY,			XK_0,		view,		{ .i = -1 } }, \
	{ MODKEY,			XK_1,		view,		{ .i = 0 } }, \
	{ MODKEY,			XK_2,		view,		{ .i = 1 } }, \
	{ MODKEY,			XK_3,		view,		{ .i = 2 } }, \
	{ MODKEY,			XK_4,		view,		{ .i = 3 } }, \
	{ MODKEY,			XK_5,		view,		{ .i = 4 } }, \
	{ MODKEY|ControlMask,		XK_1,		toggleview,	{ .i = 0 } }, \
	{ MODKEY|ControlMask,		XK_2,		toggleview,	{ .i = 1 } }, \
	{ MODKEY|ControlMask,		XK_3,		toggleview,	{ .i = 2 } }, \
	{ MODKEY|ControlMask,		XK_4,		toggleview,	{ .i = 3 } }, \
	{ MODKEY|ControlMask,		XK_5,		toggleview,	{ .i = 4 } }, \
	{ MODKEY|ShiftMask,		XK_q,		quit,		{ 0 } }, \
};

/* Query class:instance:title for regex matching info with following command:
 * xprop | awk -F '"' '/^WM_CLASS/ { printf("%s:%s:",$4,$2) }; /^WM_NAME/ { printf("%s\n",$2) }' */
#define RULES \
static Rule rule[] = { \
	/* class:instance:title regex	tags regex	isfloat */ \
	{ "Firefox.*",			"2",		False }, \
	{ "Gimp.*",			NULL,		True }, \
};
374'>374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
#
#
#           The Nim Compiler
#        (c) Copyright 2012 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

# this module does the semantic checking of type declarations
# included from sem.nim

const
  errStringOrIdentNodeExpected = "string or ident node expected"
  errStringLiteralExpected = "string literal expected"
  errIntLiteralExpected = "integer literal expected"
  errWrongNumberOfVariables = "wrong number of variables"
  errDuplicateAliasInEnumX = "duplicate value in enum '$1'"
  errOverflowInEnumX = "The enum '$1' exceeds its maximum value ($2)"
  errOrdinalTypeExpected = "ordinal type expected; given: $1"
  errSetTooBig = "set is too large; use `std/sets` for ordinal types with more than 2^16 elements"
  errBaseTypeMustBeOrdinal = "base type of a set must be an ordinal"
  errInheritanceOnlyWithNonFinalObjects = "inheritance only works with non-final objects"
  errXExpectsOneTypeParam = "'$1' expects one type parameter"
  errArrayExpectsTwoTypeParams = "array expects two type parameters"
  errInvalidVisibilityX = "invalid visibility: '$1'"
  errXCannotBeAssignedTo = "'$1' cannot be assigned to"
  errIteratorNotAllowed = "iterators can only be defined at the module's top level"
  errXNeedsReturnType = "$1 needs a return type"
  errNoReturnTypeDeclared = "no return type declared"
  errTIsNotAConcreteType = "'$1' is not a concrete type"
  errTypeExpected = "type expected"
  errXOnlyAtModuleScope = "'$1' is only allowed at top level"
  errDuplicateCaseLabel = "duplicate case label"
  errMacroBodyDependsOnGenericTypes = "the macro body cannot be compiled, " &
    "because the parameter '$1' has a generic type"
  errIllegalRecursionInTypeX = "illegal recursion in type '$1'"
  errNoGenericParamsAllowedForX = "no generic parameters allowed for $1"
  errInOutFlagNotExtern = "the '$1' modifier can be used only with imported types"

proc newOrPrevType(kind: TTypeKind, prev: PType, c: PContext, son: sink PType): PType =
  if prev == nil or prev.kind == tyGenericBody:
    result = newTypeS(kind, c, son)
  else:
    result = prev
    result.setSon(son)
    if result.kind == tyForward: result.kind = kind
  #if kind == tyError: result.flags.incl tfCheckedForDestructor

proc newOrPrevType(kind: TTypeKind, prev: PType, c: PContext): PType =
  if prev == nil or prev.kind == tyGenericBody:
    result = newTypeS(kind, c)
  else:
    result = prev
    if result.kind == tyForward: result.kind = kind

proc newConstraint(c: PContext, k: TTypeKind): PType =
  result = newTypeS(tyBuiltInTypeClass, c)
  result.flags.incl tfCheckedForDestructor
  result.addSonSkipIntLit(newTypeS(k, c), c.idgen)

proc semEnum(c: PContext, n: PNode, prev: PType): PType =
  if n.len == 0: return newConstraint(c, tyEnum)
  elif n.len == 1:
    # don't create an empty tyEnum; fixes #3052
    return errorType(c)
  var
    counter, x: BiggestInt = 0
    e: PSym = nil
    base: PType = nil
    identToReplace: ptr PNode = nil
    counterSet = initPackedSet[BiggestInt]()
  counter = 0
  base = nil
  result = newOrPrevType(tyEnum, prev, c)
  result.n = newNodeI(nkEnumTy, n.info)
  checkMinSonsLen(n, 1, c.config)
  if n[0].kind != nkEmpty:
    base = semTypeNode(c, n[0][0], nil)
    if base.kind != tyEnum:
      localError(c.config, n[0].info, "inheritance only works with an enum")
    counter = toInt64(lastOrd(c.config, base)) + 1
  rawAddSon(result, base)
  let isPure = result.sym != nil and sfPure in result.sym.flags
  var symbols: TStrTable = initStrTable()
  var hasNull = false
  for i in 1..<n.len:
    if n[i].kind == nkEmpty: continue
    var useAutoCounter = false
    case n[i].kind
    of nkEnumFieldDef:
      if n[i][0].kind == nkPragmaExpr:
        e = newSymS(skEnumField, n[i][0][0], c)
        identToReplace = addr n[i][0][0]
        pragma(c, e, n[i][0][1], enumFieldPragmas)
      else:
        e = newSymS(skEnumField, n[i][0], c)
        identToReplace = addr n[i][0]
      var v = semConstExpr(c, n[i][1])
      var strVal: PNode = nil
      case skipTypes(v.typ, abstractInst-{tyTypeDesc}).kind
      of tyTuple:
        if v.len == 2:
          strVal = v[1] # second tuple part is the string value
          if skipTypes(strVal.typ, abstractInst).kind in {tyString, tyCstring}:
            if not isOrdinalType(v[0].typ, allowEnumWithHoles=true):
              localError(c.config, v[0].info, errOrdinalTypeExpected % typeToString(v[0].typ, preferDesc))
            x = toInt64(getOrdValue(v[0])) # first tuple part is the ordinal
            n[i][1][0] = newIntTypeNode(x, getSysType(c.graph, unknownLineInfo, tyInt))
          else:
            localError(c.config, strVal.info, errStringLiteralExpected)
        else:
          localError(c.config, v.info, errWrongNumberOfVariables)
      of tyString, tyCstring:
        strVal = v
        x = counter
        useAutoCounter = true
      else:
        if isOrdinalType(v.typ, allowEnumWithHoles=true):
          x = toInt64(getOrdValue(v))
          n[i][1] = newIntTypeNode(x, getSysType(c.graph, unknownLineInfo, tyInt))
        else:
          localError(c.config, v.info, errOrdinalTypeExpected % typeToString(v.typ, preferDesc))
      if i != 1:
        if x != counter: incl(result.flags, tfEnumHasHoles)
      e.ast = strVal # might be nil
      counter = x
    of nkSym:
      e = n[i].sym
      useAutoCounter = true
    of nkIdent, nkAccQuoted:
      e = newSymS(skEnumField, n[i], c)
      identToReplace = addr n[i]
      useAutoCounter = true
    of nkPragmaExpr:
      e = newSymS(skEnumField, n[i][0], c)
      pragma(c, e, n[i][1], enumFieldPragmas)
      identToReplace = addr n[i][0]
      useAutoCounter = true
    else:
      illFormedAst(n[i], c.config)

    if useAutoCounter:
      while counter in counterSet and counter != high(typeof(counter)):
        inc counter
      counterSet.incl counter
    elif counterSet.containsOrIncl(counter):
      localError(c.config, n[i].info, errDuplicateAliasInEnumX % e.name.s)

    e.typ = result
    e.position = int(counter)
    let symNode = newSymNode(e)
    if identToReplace != nil and c.config.cmd notin cmdDocLike:
      # A hack to produce documentation for enum fields.
      identToReplace[] = symNode
    if e.position == 0: hasNull = true
    if result.sym != nil and sfExported in result.sym.flags:
      e.flags.incl {sfUsed, sfExported}

    result.n.add symNode
    styleCheckDef(c, e)
    onDef(e.info, e)
    suggestSym(c.graph, e.info, e, c.graph.usageSym)
    if sfGenSym notin e.flags:
      if not isPure:
        addInterfaceOverloadableSymAt(c, c.currentScope, e)
      else:
        declarePureEnumField(c, e)
    if (let conflict = strTableInclReportConflict(symbols, e); conflict != nil):
      wrongRedefinition(c, e.info, e.name.s, conflict.info)
    if counter == high(typeof(counter)):
      if i > 1 and result.n[i-2].sym.position == high(int):
        localError(c.config, n[i].info, errOverflowInEnumX % [e.name.s, $high(typeof(counter))])
    else:
      inc(counter)
  if isPure and sfExported in result.sym.flags:
    addPureEnum(c, LazySym(sym: result.sym))
  if tfNotNil in e.typ.flags and not hasNull:
    result.flags.incl tfRequiresInit
  setToStringProc(c.graph, result, genEnumToStrProc(result, n.info, c.graph, c.idgen))

proc semSet(c: PContext, n: PNode, prev: PType): PType =
  result = newOrPrevType(tySet, prev, c)
  if n.len == 2 and n[1].kind != nkEmpty:
    var base = semTypeNode(c, n[1], nil)
    addSonSkipIntLit(result, base, c.idgen)
    if base.kind in {tyGenericInst, tyAlias, tySink}: base = skipModifier(base)
    if base.kind notin {tyGenericParam, tyGenericInvocation}:
      if base.kind == tyForward:
        c.skipTypes.add n
      elif not isOrdinalType(base, allowEnumWithHoles = true):
        localError(c.config, n.info, errOrdinalTypeExpected % typeToString(base, preferDesc))
      elif lengthOrd(c.config, base) > MaxSetElements:
        localError(c.config, n.info, errSetTooBig)
  else:
    localError(c.config, n.info, errXExpectsOneTypeParam % "set")
    addSonSkipIntLit(result, errorType(c), c.idgen)

proc semContainerArg(c: PContext; n: PNode, kindStr: string; result: PType) =
  if n.len == 2:
    var base = semTypeNode(c, n[1], nil)
    if base.kind == tyVoid:
      localError(c.config, n.info, errTIsNotAConcreteType % typeToString(base))
    addSonSkipIntLit(result, base, c.idgen)
  else:
    localError(c.config, n.info, errXExpectsOneTypeParam % kindStr)
    addSonSkipIntLit(result, errorType(c), c.idgen)

proc semContainer(c: PContext, n: PNode, kind: TTypeKind, kindStr: string,
                  prev: PType): PType =
  result = newOrPrevType(kind, prev, c)
  semContainerArg(c, n, kindStr, result)

proc semVarargs(c: PContext, n: PNode, prev: PType): PType =
  result = newOrPrevType(tyVarargs, prev, c)
  if n.len == 2 or n.len == 3:
    var base = semTypeNode(c, n[1], nil)
    addSonSkipIntLit(result, base, c.idgen)
    if n.len == 3:
      result.n = newIdentNode(considerQuotedIdent(c, n[2]), n[2].info)
  else:
    localError(c.config, n.info, errXExpectsOneTypeParam % "varargs")
    addSonSkipIntLit(result, errorType(c), c.idgen)

proc semVarOutType(c: PContext, n: PNode, prev: PType; flags: TTypeFlags): PType =
  if n.len == 1:
    result = newOrPrevType(tyVar, prev, c)
    result.flags = flags
    var base = semTypeNode(c, n[0], nil)
    if base.kind == tyTypeDesc and not isSelf(base):
      base = base[0]
    if base.kind == tyVar:
      localError(c.config, n.info, "type 'var var' is not allowed")
      base = base[0]
    addSonSkipIntLit(result, base, c.idgen)
  else:
    result = newConstraint(c, tyVar)

proc isRecursiveType(t: PType, cycleDetector: var IntSet): bool =
  if t == nil:
    return false
  if cycleDetector.containsOrIncl(t.id):
    return true
  case t.kind
  of tyAlias, tyGenericInst, tyDistinct:
    return isRecursiveType(t.skipModifier, cycleDetector)
  else:
    return false

proc fitDefaultNode(c: PContext, n: PNode): PType =
  inc c.inStaticContext
  let expectedType = if n[^2].kind != nkEmpty: semTypeNode(c, n[^2], nil) else: nil
  n[^1] = semConstExpr(c, n[^1], expectedType = expectedType)
  let oldType = n[^1].typ
  n[^1].flags.incl nfSem
  if n[^2].kind != nkEmpty:
    if expectedType != nil and oldType != expectedType:
      n[^1] = fitNodeConsiderViewType(c, expectedType, n[^1], n[^1].info)
      changeType(c, n[^1], expectedType, true) # infer types for default fields value
        # bug #22926; be cautious that it uses `semConstExpr` to
        # evaulate the default fields; it's only natural to use
        # `changeType` to infer types for constant values
        # that's also the reason why we don't use `semExpr` to check
        # the type since two overlapping error messages might be produced
    result = n[^1].typ
  else:
    result = n[^1].typ
  # xxx any troubles related to defaults fields, consult `semConst` for a potential answer
  if n[^1].kind != nkNilLit:
    typeAllowedCheck(c, n.info, result, skConst, {taProcContextIsNotMacro, taIsDefaultField})
  dec c.inStaticContext

proc isRecursiveType*(t: PType): bool =
  # handle simple recusive types before typeFinalPass
  var cycleDetector = initIntSet()
  isRecursiveType(t, cycleDetector)

proc addSonSkipIntLitChecked(c: PContext; father, son: PType; it: PNode, id: IdGenerator) =
  let s = son.skipIntLit(id)
  father.add(s)
  if isRecursiveType(s):
    localError(c.config, it.info, "illegal recursion in type '" & typeToString(s) & "'")
  else:
    propagateToOwner(father, s)

proc semDistinct(c: PContext, n: PNode, prev: PType): PType =
  if n.len == 0: return newConstraint(c, tyDistinct)
  result = newOrPrevType(tyDistinct, prev, c)
  addSonSkipIntLitChecked(c, result, semTypeNode(c, n[0], nil), n[0], c.idgen)
  if n.len > 1: result.n = n[1]

proc semRangeAux(c: PContext, n: PNode, prev: PType): PType =
  assert isRange(n)
  checkSonsLen(n, 3, c.config)
  result = newOrPrevType(tyRange, prev, c)
  result.n = newNodeI(nkRange, n.info)
  # always create a 'valid' range type, but overwrite it later
  # because 'semExprWithType' can raise an exception. See bug #6895.
  addSonSkipIntLit(result, errorType(c), c.idgen)

  if (n[1].kind == nkEmpty) or (n[2].kind == nkEmpty):
    localError(c.config, n.info, "range is empty")

  var range: array[2, PNode]
  # XXX this is still a hard compilation in a generic context, this can
  # result in unresolved generic parameters being treated like real types
  range[0] = semExprWithType(c, n[1], {efDetermineType})
  range[1] = semExprWithType(c, n[2], {efDetermineType})

  var rangeT: array[2, PType] = default(array[2, PType])
  for i in 0..1:
    rangeT[i] = range[i].typ.skipTypes({tyStatic}).skipIntLit(c.idgen)

  let hasUnknownTypes = c.inGenericContext > 0 and
    (rangeT[0].kind == tyFromExpr or rangeT[1].kind == tyFromExpr)

  if not hasUnknownTypes:
    if not sameType(rangeT[0].skipTypes({tyRange}), rangeT[1].skipTypes({tyRange})):
      typeMismatch(c.config, n.info, rangeT[0], rangeT[1], n)

    elif not isOrdinalType(rangeT[0]) and rangeT[0].kind notin {tyFloat..tyFloat128} or
        rangeT[0].kind == tyBool:
      localError(c.config, n.info, "ordinal or float type expected, but got " & typeToString(rangeT[0]))
    elif enumHasHoles(rangeT[0]):
      localError(c.config, n.info, "enum '$1' has holes" % typeToString(rangeT[0]))

  for i in 0..1:
    if hasUnresolvedArgs(c, range[i]):
      result.n.add makeStaticExpr(c, range[i])
      result.flags.incl tfUnresolved
    else:
      result.n.add semConstExpr(c, range[i])

    if result.n[i].kind in {nkFloatLit..nkFloat64Lit} and result.n[i].floatVal.isNaN:
      localError(c.config, n.info, "NaN is not a valid range " & (if i == 0: "start" else: "end"))

  if weakLeValue(result.n[0], result.n[1]) == impNo:
    localError(c.config, n.info, "range is empty")

  result[0] = rangeT[0]

proc semRange(c: PContext, n: PNode, prev: PType): PType =
  result = nil
  if n.len == 2:
    if isRange(n[1]):
      result = semRangeAux(c, n[1], prev)
      if not isDefined(c.config, "nimPreviewRangeDefault"):
        let n = result.n
        if n[0].kind in {nkCharLit..nkUInt64Lit} and n[0].intVal > 0:
          incl(result.flags, tfRequiresInit)
        elif n[1].kind in {nkCharLit..nkUInt64Lit} and n[1].intVal < 0:
          incl(result.flags, tfRequiresInit)
        elif n[0].kind in {nkFloatLit..nkFloat64Lit} and
            n[0].floatVal > 0.0:
          incl(result.flags, tfRequiresInit)
        elif n[1].kind in {nkFloatLit..nkFloat64Lit} and
            n[1].floatVal < 0.0:
          incl(result.flags, tfRequiresInit)
    else:
      if n[1].kind == nkInfix and considerQuotedIdent(c, n[1][0]).s == "..<":
        localError(c.config, n[0].info, "range types need to be constructed with '..', '..<' is not supported")
      else:
        localError(c.config, n[0].info, "expected range")
      result = newOrPrevType(tyError, prev, c)
  else:
    localError(c.config, n.info, errXExpectsOneTypeParam % "range")
    result = newOrPrevType(tyError, prev, c)

proc semArrayIndexConst(c: PContext, e: PNode, info: TLineInfo): PType =
  let x = semConstExpr(c, e)
  if x.kind in {nkIntLit..nkUInt64Lit}:
    result = makeRangeType(c, 0, x.intVal-1, info,
                        x.typ.skipTypes({tyTypeDesc}))
  else:
    result = x.typ.skipTypes({tyTypeDesc})

proc semArrayIndex(c: PContext, n: PNode): PType =
  if isRange(n):
    result = semRangeAux(c, n, nil)
  elif n.kind == nkInfix and n[0].kind == nkIdent and n[0].ident.s == "..<":
    result = errorType(c)
  else:
    # XXX this is still a hard compilation in a generic context, this can
    # result in unresolved generic parameters being treated like real types
    let e = semExprWithType(c, n, {efDetermineType})
    if e.typ.kind == tyFromExpr:
      result = makeRangeWithStaticExpr(c, e.typ.n)
    elif e.kind in {nkIntLit..nkUInt64Lit}:
      if e.intVal < 0:
        localError(c.config, n.info,
          "Array length can't be negative, but was " & $e.intVal)
      result = makeRangeType(c, 0, e.intVal-1, n.info, e.typ)
    elif e.kind == nkSym and (e.typ.kind == tyStatic or e.typ.kind == tyTypeDesc):
      if e.typ.kind == tyStatic:
        if e.sym.ast != nil:
          return semArrayIndex(c, e.sym.ast)
        if e.typ.skipModifier.kind != tyGenericParam and not isOrdinalType(e.typ.skipModifier):
          let info = if n.safeLen > 1: n[1].info else: n.info
          localError(c.config, info, errOrdinalTypeExpected % typeToString(e.typ, preferDesc))
        result = makeRangeWithStaticExpr(c, e)
        if c.inGenericContext > 0: result.flags.incl tfUnresolved
      else:
        result = e.typ.skipTypes({tyTypeDesc})
        result.flags.incl tfImplicitStatic
    elif e.kind in (nkCallKinds + {nkBracketExpr}) and hasUnresolvedArgs(c, e):
      if not isOrdinalType(e.typ.skipTypes({tyStatic, tyAlias, tyGenericInst, tySink})):
        localError(c.config, n[1].info, errOrdinalTypeExpected % typeToString(e.typ, preferDesc))
      # This is an int returning call, depending on an
      # yet unknown generic param (see tuninstantiatedgenericcalls).
      # We are going to construct a range type that will be
      # properly filled-out in semtypinst (see how tyStaticExpr
      # is handled there).
      result = makeRangeWithStaticExpr(c, e)
    elif e.kind == nkIdent:
      result = e.typ.skipTypes({tyTypeDesc})
    else:
      result = semArrayIndexConst(c, e, n.info)
        #localError(c.config, n[1].info, errConstExprExpected)

proc semArray(c: PContext, n: PNode, prev: PType): PType =
  var base: PType
  if n.len == 3:
    # 3 = length(array indx base)
    let indx = semArrayIndex(c, n[1])
    var indxB = indx
    if indxB.kind in {tyGenericInst, tyAlias, tySink}: indxB = skipModifier(indxB)
    if indxB.kind notin {tyGenericParam, tyStatic, tyFromExpr} and
        tfUnresolved notin indxB.flags:
      if not isOrdinalType(indxB):
        localError(c.config, n[1].info, errOrdinalTypeExpected % typeToString(indxB, preferDesc))
      elif enumHasHoles(indxB):
        localError(c.config, n[1].info, "enum '$1' has holes" %
                   typeToString(indxB.skipTypes({tyRange})))
      elif indxB.kind != tyRange and
          lengthOrd(c.config, indxB) > high(uint16).int:
        # assume range type is intentional
        localError(c.config, n[1].info,
          "index type '$1' for array is too large" % typeToString(indxB))
    base = semTypeNode(c, n[2], nil)
    # ensure we only construct a tyArray when there was no error (bug #3048):
    # bug #6682: Do not propagate initialization requirements etc for the
    # index type:
    result = newOrPrevType(tyArray, prev, c, indx)
    addSonSkipIntLit(result, base, c.idgen)
  else:
    localError(c.config, n.info, errArrayExpectsTwoTypeParams)
    result = newOrPrevType(tyError, prev, c)

proc semIterableType(c: PContext, n: PNode, prev: PType): PType =
  result = newOrPrevType(tyIterable, prev, c)
  if n.len == 2:
    let base = semTypeNode(c, n[1], nil)
    addSonSkipIntLit(result, base, c.idgen)
  else:
    localError(c.config, n.info, errXExpectsOneTypeParam % "iterable")
    result = newOrPrevType(tyError, prev, c)

proc semOrdinal(c: PContext, n: PNode, prev: PType): PType =
  result = newOrPrevType(tyOrdinal, prev, c)
  if n.len == 2:
    var base = semTypeNode(c, n[1], nil)
    if base.kind != tyGenericParam:
      if not isOrdinalType(base):
        localError(c.config, n[1].info, errOrdinalTypeExpected % typeToString(base, preferDesc))
    addSonSkipIntLit(result, base, c.idgen)
  else:
    localError(c.config, n.info, errXExpectsOneTypeParam % "ordinal")
    result = newOrPrevType(tyError, prev, c)

proc semAnonTuple(c: PContext, n: PNode, prev: PType): PType =
  if n.len == 0:
    localError(c.config, n.info, errTypeExpected)
  result = newOrPrevType(tyTuple, prev, c)
  for it in n:
    let t = semTypeNode(c, it, nil)
    addSonSkipIntLitChecked(c, result, t, it, c.idgen)

proc firstRange(config: ConfigRef, t: PType): PNode =
  if t.skipModifier().kind in tyFloat..tyFloat64:
    result = newFloatNode(nkFloatLit, firstFloat(t))
  else:
    result = newIntNode(nkIntLit, firstOrd(config, t))
  result.typ = t

proc semTuple(c: PContext, n: PNode, prev: PType): PType =
  var typ: PType
  result = newOrPrevType(tyTuple, prev, c)
  result.n = newNodeI(nkRecList, n.info)
  var check = initIntSet()
  var counter = 0
  for i in ord(n.kind == nkBracketExpr)..<n.len:
    var a = n[i]
    if (a.kind != nkIdentDefs): illFormedAst(a, c.config)
    checkMinSonsLen(a, 3, c.config)
    var hasDefaultField = a[^1].kind != nkEmpty
    if hasDefaultField:
      typ = fitDefaultNode(c, a)
    elif a[^2].kind != nkEmpty:
      typ = semTypeNode(c, a[^2], nil)
      if c.graph.config.isDefined("nimPreviewRangeDefault") and typ.skipTypes(abstractInst).kind == tyRange:
        a[^1] = firstRange(c.config, typ)
        hasDefaultField = true
    else:
      localError(c.config, a.info, errTypeExpected)
      typ = errorType(c)
    for j in 0..<a.len - 2:
      var field = newSymG(skField, a[j], c)
      field.typ = typ
      field.position = counter
      inc(counter)
      if containsOrIncl(check, field.name.id):
        localError(c.config, a[j].info, "attempt to redefine: '" & field.name.s & "'")
      else:
        let fSym = newSymNode(field)
        if hasDefaultField:
          fSym.sym.ast = a[^1]
          fSym.sym.ast.flags.incl nfSkipFieldChecking
        result.n.add fSym
        addSonSkipIntLit(result, typ, c.idgen)
      styleCheckDef(c, a[j].info, field)
      onDef(field.info, field)
  if result.n.len == 0: result.n = nil
  if isTupleRecursive(result):
    localError(c.config, n.info, errIllegalRecursionInTypeX % typeToString(result))

proc semIdentVis(c: PContext, kind: TSymKind, n: PNode,
                 allowed: TSymFlags): PSym =
  # identifier with visibility
  if n.kind == nkPostfix:
    if n.len == 2:
      # for gensym'ed identifiers the identifier may already have been
      # transformed to a symbol and we need to use that here:
      result = newSymG(kind, n[1], c)
      var v = considerQuotedIdent(c, n[0])
      if sfExported in allowed and v.id == ord(wStar):
        incl(result.flags, sfExported)
      else:
        if not (sfExported in allowed):
          localError(c.config, n[0].info, errXOnlyAtModuleScope % "export")
        else:
          localError(c.config, n[0].info, errInvalidVisibilityX % renderTree(n[0]))
    else:
      result = nil
      illFormedAst(n, c.config)
  else:
    result = newSymG(kind, n, c)

proc semIdentWithPragma(c: PContext, kind: TSymKind, n: PNode,
                        allowed: TSymFlags, fromTopLevel = false): PSym =
  if n.kind == nkPragmaExpr:
    checkSonsLen(n, 2, c.config)
    result = semIdentVis(c, kind, n[0], allowed)
    case kind
    of skType:
      # process pragmas later, because result.typ has not been set yet
      discard
    of skField: pragma(c, result, n[1], fieldPragmas)
    of skVar:   pragma(c, result, n[1], varPragmas)
    of skLet:   pragma(c, result, n[1], letPragmas)
    of skConst: pragma(c, result, n[1], constPragmas)
    else: discard
  else:
    result = semIdentVis(c, kind, n, allowed)
    let invalidPragmasForPush = if fromTopLevel and sfWasGenSym notin result.flags:
      {}
    else:
      {wExportc, wExportCpp, wDynlib}
    case kind
    of skField: implicitPragmas(c, result, n.info, fieldPragmas)
    of skVar:   implicitPragmas(c, result, n.info, varPragmas-invalidPragmasForPush)
    of skLet:   implicitPragmas(c, result, n.info, letPragmas-invalidPragmasForPush)
    of skConst: implicitPragmas(c, result, n.info, constPragmas-invalidPragmasForPush)
    else: discard

proc checkForOverlap(c: PContext, t: PNode, currentEx, branchIndex: int) =
  let ex = t[branchIndex][currentEx].skipConv
  for i in 1..branchIndex:
    for j in 0..<t[i].len - 1:
      if i == branchIndex and j == currentEx: break
      if overlap(t[i][j].skipConv, ex):
        localError(c.config, ex.info, errDuplicateCaseLabel)

proc semBranchRange(c: PContext, n, a, b: PNode, covered: var Int128): PNode =
  checkMinSonsLen(n, 1, c.config)
  let ac = semConstExpr(c, a)
  let bc = semConstExpr(c, b)
  if ac.kind in {nkStrLit..nkTripleStrLit} or bc.kind in {nkStrLit..nkTripleStrLit}:
    localError(c.config, b.info, "range of string is invalid")
  var at = fitNode(c, n[0].typ, ac, ac.info).skipConvTakeType
  var bt = fitNode(c, n[0].typ, bc, bc.info).skipConvTakeType
  # the calls to fitNode may introduce calls to converters
  # mirrored with semCaseBranch for single elements
  if at.kind in {nkHiddenCallConv, nkHiddenStdConv, nkHiddenSubConv}:
    at = semConstExpr(c, at)
  if bt.kind in {nkHiddenCallConv, nkHiddenStdConv, nkHiddenSubConv}:
    bt = semConstExpr(c, bt)
  result = newNodeI(nkRange, a.info)
  result.add(at)
  result.add(bt)
  if emptyRange(ac, bc): localError(c.config, b.info, "range is empty")
  else: covered = covered + getOrdValue(bc) + 1 - getOrdValue(ac)

proc semCaseBranchRange(c: PContext, t, b: PNode,
                        covered: var Int128): PNode =
  checkSonsLen(b, 3, c.config)
  result = semBranchRange(c, t, b[1], b[2], covered)

proc semCaseBranchSetElem(c: PContext, n, b: PNode,
                          covered: var Int128): PNode =
  if isRange(b):
    checkSonsLen(b, 3, c.config)
    result = semBranchRange(c, n, b[1], b[2], covered)
  elif b.kind == nkRange:
    checkSonsLen(b, 2, c.config)
    result = semBranchRange(c, n, b[0], b[1], covered)
  else:
    result = fitNode(c, n[0].typ, b, b.info)
    inc(covered)

proc semCaseBranch(c: PContext, n, branch: PNode, branchIndex: int,
                   covered: var Int128) =
  let lastIndex = branch.len - 2
  for i in 0..lastIndex:
    var b = branch[i]
    if b.kind == nkRange:
      branch[i] = b
      # same check as in semBranchRange for exhaustiveness
      covered = covered + getOrdValue(b[1]) + 1 - getOrdValue(b[0])
    elif isRange(b):
      branch[i] = semCaseBranchRange(c, n, b, covered)
    else:
      # constant sets and arrays are allowed:
      # set expected type to selector type for type inference
      # even if it can be a different type like a set or array
      var r = semConstExpr(c, b, expectedType = n[0].typ)
      if r.kind in {nkCurly, nkBracket} and r.len == 0 and branch.len == 2:
        # discarding ``{}`` and ``[]`` branches silently
        delSon(branch, 0)
        return
      elif r.kind notin {nkCurly, nkBracket} or r.len == 0:
        checkMinSonsLen(n, 1, c.config)
        var tmp = fitNode(c, n[0].typ, r, r.info)
        # the call to fitNode may introduce a call to a converter
        # mirrored with semBranchRange
        if tmp.kind in {nkHiddenCallConv, nkHiddenStdConv, nkHiddenSubConv}:
          tmp = semConstExpr(c, tmp)
        branch[i] = skipConv(tmp)
        inc(covered)
      else:
        if r.kind == nkCurly:
          r = deduplicate(c.config, r)

        # first element is special and will overwrite: branch[i]:
        branch[i] = semCaseBranchSetElem(c, n, r[0], covered)

        # other elements have to be added to ``branch``
        for j in 1..<r.len:
          branch.add(semCaseBranchSetElem(c, n, r[j], covered))
          # caution! last son of branch must be the actions to execute:
          swap(branch[^2], branch[^1])
    checkForOverlap(c, n, i, branchIndex)

  # Elements added above needs to be checked for overlaps.
  for i in lastIndex.succ..<branch.len - 1:
    checkForOverlap(c, n, i, branchIndex)

proc toCover(c: PContext, t: PType): Int128 =
  let t2 = skipTypes(t, abstractVarRange-{tyTypeDesc})
  if t2.kind == tyEnum and enumHasHoles(t2):
    result = toInt128(t2.n.len)
  else:
    # <----
    let t = skipTypes(t, abstractVar-{tyTypeDesc})
    # XXX: hack incoming. lengthOrd is incorrect for 64bit integer
    # types because it doesn't uset Int128 yet.  This entire branching
    # should be removed as soon as lengthOrd uses int128.
    if t.kind in {tyInt64, tyUInt64}:
      result = toInt128(1) shl 64
    elif t.kind in {tyInt, tyUInt}:
      result = toInt128(1) shl (c.config.target.intSize * 8)
    else:
      result = lengthOrd(c.config, t)

proc semRecordNodeAux(c: PContext, n: PNode, check: var IntSet, pos: var int,
                      father: PNode, rectype: PType, hasCaseFields = false)

proc getIntSetOfType(c: PContext, t: PType): IntSet =
  result = initIntSet()
  if t.enumHasHoles:
    let t = t.skipTypes(abstractRange)
    for field in t.n.sons:
      result.incl(field.sym.position)
  else:
    assert(lengthOrd(c.config, t) <= BiggestInt(MaxSetElements))
    for i in toInt64(firstOrd(c.config, t))..toInt64(lastOrd(c.config, t)):
      result.incl(i.int)

iterator processBranchVals(b: PNode): int =
  assert b.kind in {nkOfBranch, nkElifBranch, nkElse}
  if b.kind == nkOfBranch:
    for i in 0..<b.len-1:
      if b[i].kind in {nkIntLit, nkCharLit}:
        yield b[i].intVal.int
      elif b[i].kind == nkRange:
        for i in b[i][0].intVal..b[i][1].intVal:
          yield i.int

proc renderAsType(vals: IntSet, t: PType): string =
  result = "{"
  let t = t.skipTypes(abstractRange)
  var enumSymOffset = 0
  var i = 0
  for val in vals:
    if result.len > 1:
      result &= ", "
    case t.kind:
    of tyEnum, tyBool:
      while t.n[enumSymOffset].sym.position < val: inc(enumSymOffset)
      result &= t.n[enumSymOffset].sym.name.s
    of tyChar:
      result.addQuoted(char(val))
    else:
      if i == 64:
        result &= "omitted $1 values..." % $(vals.len - i)
        break
      else:
        result &= $val
    inc(i)
  result &= "}"

proc formatMissingEnums(c: PContext, n: PNode): string =
  var coveredCases = initIntSet()
  for i in 1..<n.len:
    for val in processBranchVals(n[i]):
      coveredCases.incl val
  result = (c.getIntSetOfType(n[0].typ) - coveredCases).renderAsType(n[0].typ)

proc semRecordCase(c: PContext, n: PNode, check: var IntSet, pos: var int,
                   father: PNode, rectype: PType) =
  var a = copyNode(n)
  checkMinSonsLen(n, 2, c.config)
  semRecordNodeAux(c, n[0], check, pos, a, rectype, hasCaseFields = true)
  if a[0].kind != nkSym:
    internalError(c.config, "semRecordCase: discriminant is no symbol")
    return
  incl(a[0].sym.flags, sfDiscriminant)
  var covered = toInt128(0)
  var chckCovered = false
  var typ = skipTypes(a[0].typ, abstractVar-{tyTypeDesc})
  const shouldChckCovered = {tyInt..tyInt64, tyChar, tyEnum, tyUInt..tyUInt32, tyBool}
  case typ.kind
  of shouldChckCovered:
    chckCovered = true
  of tyFloat..tyFloat128, tyError:
    discard
  of tyRange:
    if skipTypes(typ.elementType, abstractInst).kind in shouldChckCovered:
      chckCovered = true
  of tyForward:
    errorUndeclaredIdentifier(c, n[0].info, typ.sym.name.s)
  elif not isOrdinalType(typ):
    localError(c.config, n[0].info, "selector must be of an ordinal type, float")
  if firstOrd(c.config, typ) != 0:
    localError(c.config, n.info, "low(" & $a[0].sym.name.s &
                                     ") must be 0 for discriminant")
  elif lengthOrd(c.config, typ) > 0x00007FFF:
    localError(c.config, n.info, "len($1) must be less than 32768" % a[0].sym.name.s)

  for i in 1..<n.len:
    var b = copyTree(n[i])
    a.add b
    case n[i].kind
    of nkOfBranch:
      checkMinSonsLen(b, 2, c.config)
      semCaseBranch(c, a, b, i, covered)
    of nkElse:
      checkSonsLen(b, 1, c.config)
      if chckCovered and covered == toCover(c, a[0].typ):
        message(c.config, b.info, warnUnreachableElse)
      chckCovered = false
    else: illFormedAst(n, c.config)
    delSon(b, b.len - 1)
    semRecordNodeAux(c, lastSon(n[i]), check, pos, b, rectype, hasCaseFields = true)
  if chckCovered and covered != toCover(c, a[0].typ):
    if a[0].typ.skipTypes(abstractRange).kind == tyEnum:
      localError(c.config, a.info, "not all cases are covered; missing: $1" %
                 formatMissingEnums(c, a))
    else:
      localError(c.config, a.info, "not all cases are covered")
  father.add a

proc semRecordNodeAux(c: PContext, n: PNode, check: var IntSet, pos: var int,
                      father: PNode, rectype: PType, hasCaseFields: bool) =
  if n == nil: return
  case n.kind
  of nkRecWhen:
    var a = copyTree(n)
    var branch: PNode = nil   # the branch to take
    var cannotResolve = false # no branch should be taken
    for i in 0..<a.len:
      var it = a[i]
      if it == nil: illFormedAst(n, c.config)
      var idx = 1
      case it.kind
      of nkElifBranch:
        checkSonsLen(it, 2, c.config)
        if c.inGenericContext == 0:
          var e = semConstBoolExpr(c, it[0])
          if e.kind != nkIntLit: discard "don't report followup error"
          elif e.intVal != 0 and branch == nil: branch = it[1]
        else:
          # XXX this is still a hard compilation in a generic context, this can
          # result in unresolved generic parameters being treated like real types
          let e = semExprWithType(c, it[0], {efDetermineType})
          if e.typ.kind == tyFromExpr:
            it[0] = makeStaticExpr(c, e)
            cannotResolve = true
          else:
            it[0] = forceBool(c, e)
            let val = getConstExpr(c.module, it[0], c.idgen, c.graph)
            if val == nil or val.kind != nkIntLit:
              cannotResolve = true
            elif not cannotResolve and val.intVal != 0 and branch == nil:
              branch = it[1]
      of nkElse:
        checkSonsLen(it, 1, c.config)
        if branch == nil and not cannotResolve: branch = it[0]
        idx = 0
      else: illFormedAst(n, c.config)
      if c.inGenericContext > 0 and cannotResolve:
        # use a new check intset here for each branch:
        var newCheck: IntSet = check
        var newPos = pos
        var newf = newNodeI(nkRecList, n.info)
        semRecordNodeAux(c, it[idx], newCheck, newPos, newf, rectype, hasCaseFields)
        it[idx] = if newf.len == 1: newf[0] else: newf
    if branch != nil:
      semRecordNodeAux(c, branch, check, pos, father, rectype, hasCaseFields)
    elif cannotResolve:
      father.add a
    elif father.kind in {nkElse, nkOfBranch}:
      father.add newNodeI(nkRecList, n.info)
  of nkRecCase:
    semRecordCase(c, n, check, pos, father, rectype)
  of nkNilLit:
    if father.kind != nkRecList: father.add newNodeI(nkRecList, n.info)
  of nkRecList:
    # attempt to keep the nesting at a sane level:
    var a = if father.kind == nkRecList: father else: copyNode(n)
    for i in 0..<n.len:
      semRecordNodeAux(c, n[i], check, pos, a, rectype, hasCaseFields)
    if a != father: father.add a
  of nkIdentDefs:
    checkMinSonsLen(n, 3, c.config)
    var a: PNode
    if father.kind != nkRecList and n.len >= 4: a = newNodeI(nkRecList, n.info)
    else: a = newNodeI(nkEmpty, n.info)
    var typ: PType
    var hasDefaultField = n[^1].kind != nkEmpty
    if hasDefaultField:
      typ = fitDefaultNode(c, n)
      propagateToOwner(rectype, typ)
    elif n[^2].kind == nkEmpty:
      localError(c.config, n.info, errTypeExpected)
      typ = errorType(c)
    else:
      typ = semTypeNode(c, n[^2], nil)
      if c.graph.config.isDefined("nimPreviewRangeDefault") and typ.skipTypes(abstractInst).kind == tyRange:
        n[^1] = firstRange(c.config, typ)
        hasDefaultField = true
      propagateToOwner(rectype, typ)
    var fieldOwner = if c.inGenericContext > 0: c.getCurrOwner
                     else: rectype.sym
    for i in 0..<n.len-2:
      var f = semIdentWithPragma(c, skField, n[i], {sfExported})
      let info = if n[i].kind == nkPostfix:
                   n[i][1].info
                 else:
                   n[i].info
      suggestSym(c.graph, info, f, c.graph.usageSym)
      f.typ = typ
      f.position = pos
      f.options = c.config.options
      if fieldOwner != nil and
         {sfImportc, sfExportc} * fieldOwner.flags != {} and
         not hasCaseFields and f.loc.snippet == "":
        f.loc.snippet = rope(f.name.s)
        f.flags.incl {sfImportc, sfExportc} * fieldOwner.flags
      inc(pos)
      if containsOrIncl(check, f.name.id):
        localError(c.config, info, "attempt to redefine: '" & f.name.s & "'")
      let fSym = newSymNode(f)
      if hasDefaultField:
        fSym.sym.ast = n[^1]
        fSym.sym.ast.flags.incl nfSkipFieldChecking
      if a.kind == nkEmpty: father.add fSym
      else: a.add fSym
      styleCheckDef(c, f)
      onDef(f.info, f)
    if a.kind != nkEmpty: father.add a
  of nkSym:
    # This branch only valid during generic object
    # inherited from generic/partial specialized parent second check.
    # There is no branch validity check here
    if containsOrIncl(check, n.sym.name.id):
      localError(c.config, n.info, "attempt to redefine: '" & n.sym.name.s & "'")
    father.add n
  of nkEmpty:
    if father.kind in {nkElse, nkOfBranch}:
      father.add n
  else: illFormedAst(n, c.config)

proc addInheritedFieldsAux(c: PContext, check: var IntSet, pos: var int,
                           n: PNode) =
  case n.kind
  of nkRecCase:
    if (n[0].kind != nkSym): internalError(c.config, n.info, "addInheritedFieldsAux")
    addInheritedFieldsAux(c, check, pos, n[0])
    for i in 1..<n.len:
      case n[i].kind
      of nkOfBranch, nkElse:
        addInheritedFieldsAux(c, check, pos, lastSon(n[i]))
      else: internalError(c.config, n.info, "addInheritedFieldsAux(record case branch)")
  of nkRecList, nkRecWhen, nkElifBranch, nkElse:
    for i in int(n.kind == nkElifBranch)..<n.len:
      addInheritedFieldsAux(c, check, pos, n[i])
  of nkSym:
    incl(check, n.sym.name.id)
    inc(pos)
  else: internalError(c.config, n.info, "addInheritedFieldsAux()")

proc skipGenericInvocation(t: PType): PType {.inline.} =
  result = t
  if result.kind == tyGenericInvocation:
    result = result[0]
  while result.kind in {tyGenericInst, tyGenericBody, tyRef, tyPtr, tyAlias, tySink, tyOwned}:
    result = skipModifier(result)

proc tryAddInheritedFields(c: PContext, check: var IntSet, pos: var int,
                        obj: PType, n: PNode, isPartial = false, innerObj: PType = nil): bool =
  if ((not isPartial) and (obj.kind notin {tyObject, tyGenericParam} or tfFinal in obj.flags)) or
    (innerObj != nil and obj.sym.id == innerObj.sym.id):
    localError(c.config, n.info, "Cannot inherit from: '" & $obj & "'")
    result = false
  elif obj.kind == tyObject:
    result = true
    if (obj.len > 0) and (obj[0] != nil):
      result = result and tryAddInheritedFields(c, check, pos, obj[0].skipGenericInvocation, n, false, obj)
    addInheritedFieldsAux(c, check, pos, obj.n)
  else:
    result = true

proc semObjectNode(c: PContext, n: PNode, prev: PType; flags: TTypeFlags): PType =
  result = nil
  if n.len == 0:
    return newConstraint(c, tyObject)
  var check = initIntSet()
  var pos = 0
  var base, realBase: PType = nil
  # n[0] contains the pragmas (if any). We process these later...
  checkSonsLen(n, 3, c.config)
  if n[1].kind != nkEmpty:
    realBase = semTypeNode(c, n[1][0], nil)
    base = skipTypesOrNil(realBase, skipPtrs)
    if base.isNil:
      localError(c.config, n.info, "cannot inherit from a type that is not an object type")
    else:
      var concreteBase = skipGenericInvocation(base)
      if concreteBase.kind in {tyObject, tyGenericParam,
        tyGenericInvocation} and tfFinal notin concreteBase.flags:
        # we only check fields duplication of object inherited from
        # concrete object. If inheriting from generic object or partial
        # specialized object, there will be second check after instantiation
        # located in semGeneric.
        if concreteBase.kind == tyObject:
          if concreteBase.sym != nil and concreteBase.sym.magic == mException and
              sfSystemModule notin c.module.flags:
            message(c.config, n.info, warnInheritFromException, "")
          if not tryAddInheritedFields(c, check, pos, concreteBase, n):
            return newType(tyError, c.idgen, result.owner)

      elif concreteBase.kind == tyForward:
        c.skipTypes.add n #we retry in the final pass
      else:
        if concreteBase.kind != tyError:
          localError(c.config, n[1].info, "inheritance only works with non-final objects; " &
             "for " & typeToString(realBase) & " to be inheritable it must be " &
             "'object of RootObj' instead of 'object'")
        base = nil
        realBase = nil
  if n.kind != nkObjectTy: internalError(c.config, n.info, "semObjectNode")
  result = newOrPrevType(tyObject, prev, c)
  rawAddSon(result, realBase)
  if realBase == nil and tfInheritable in flags:
    result.flags.incl tfInheritable
  if tfAcyclic in flags: result.flags.incl tfAcyclic
  if result.n.isNil:
    result.n = newNodeI(nkRecList, n.info)
  else:
    # partial object so add things to the check
    if not tryAddInheritedFields(c, check, pos, result, n, isPartial = true):
      return newType(tyError, c.idgen, result.owner)

  semRecordNodeAux(c, n[2], check, pos, result.n, result)
  if n[0].kind != nkEmpty:
    # dummy symbol for `pragma`:
    var s = newSymS(skType, newIdentNode(getIdent(c.cache, "dummy"), n.info), c)
    s.typ = result
    pragma(c, s, n[0], typePragmas)
  if base == nil and tfInheritable notin result.flags:
    incl(result.flags, tfFinal)
  if c.inGenericContext == 0 and computeRequiresInit(c, result):
    result.flags.incl tfRequiresInit

proc semAnyRef(c: PContext; n: PNode; kind: TTypeKind; prev: PType): PType =
  if n.len < 1:
    result = newConstraint(c, kind)
  else:
    let isCall = int ord(n.kind in nkCallKinds+{nkBracketExpr})
    let n = if n[0].kind == nkBracket: n[0] else: n
    checkMinSonsLen(n, 1, c.config)
    let body = n.lastSon
    var t = if prev != nil and prev.kind != tyGenericBody and body.kind == nkObjectTy:
              semObjectNode(c, body, nil, prev.flags)
            else:
              semTypeNode(c, body, nil)
    if t.kind == tyTypeDesc and tfUnresolved notin t.flags:
      t = t.base
    if t.kind == tyVoid:
      localError(c.config, n.info, "type '$1 void' is not allowed" % kind.toHumanStr)
    result = newOrPrevType(kind, prev, c)
    var isNilable = false
    var wrapperKind = tyNone
    # check every except the last is an object:
    for i in isCall..<n.len-1:
      let ni = n[i]
      # echo "semAnyRef ", "n: ", n, "i: ", i, "ni: ", ni
      if ni.kind == nkNilLit:
        isNilable = true
      else:
        let region = semTypeNode(c, ni, nil)
        if region.kind in {tyOwned, tySink}:
          wrapperKind = region.kind
        elif region.skipTypes({tyGenericInst, tyAlias, tySink}).kind notin {
              tyError, tyObject}:
          message c.config, n[i].info, errGenerated, "region needs to be an object type"
          addSonSkipIntLit(result, region, c.idgen)
        else:
          message(c.config, n.info, warnDeprecated, "region for pointer types is deprecated")
          addSonSkipIntLit(result, region, c.idgen)
    addSonSkipIntLit(result, t, c.idgen)
    if tfPartial in result.flags:
      if result.elementType.kind == tyObject: incl(result.elementType.flags, tfPartial)
    # if not isNilable: result.flags.incl tfNotNil
    case wrapperKind
    of tyOwned:
      if optOwnedRefs in c.config.globalOptions:
        let t = newTypeS(tyOwned, c, result)
        t.flags.incl tfHasOwned
        result = t
    of tySink:
      let t = newTypeS(tySink, c, result)
      result = t
    else: discard
    if result.kind == tyRef and c.config.selectedGC in {gcArc, gcOrc, gcAtomicArc}:
      result.flags.incl tfHasAsgn

proc findEnforcedStaticType(t: PType): PType =
  # This handles types such as `static[T] and Foo`,
  # which are subset of `static[T]`, hence they could
  # be treated in the same way
  result = nil
  if t == nil: return nil
  if t.kind == tyStatic: return t
  if t.kind == tyAnd:
    for s in t.kids:
      let t = findEnforcedStaticType(s)
      if t != nil: return t

proc addParamOrResult(c: PContext, param: PSym, kind: TSymKind) =
  if kind == skMacro:
    let staticType = findEnforcedStaticType(param.typ)
    if staticType != nil:
      var a = copySym(param, c.idgen)
      a.typ = staticType.base
      addDecl(c, a)
      #elif param.typ != nil and param.typ.kind == tyTypeDesc:
      #  addDecl(c, param)
    else:
      # within a macro, every param has the type NimNode!
      let nn = getSysSym(c.graph, param.info, "NimNode")
      var a = copySym(param, c.idgen)
      a.typ = nn.typ
      addDecl(c, a)
  else:
    if sfGenSym in param.flags:
      # bug #XXX, fix the gensym'ed parameters owner:
      if param.owner == nil:
        param.owner = getCurrOwner(c)
    else: addDecl(c, param)

template shouldHaveMeta(t) =
  internalAssert c.config, tfHasMeta in t.flags
  # result.lastSon.flags.incl tfHasMeta

proc addImplicitGeneric(c: PContext; typeClass: PType, typId: PIdent;
                        info: TLineInfo; genericParams: PNode;
                        paramName: string): PType =
  if genericParams == nil:
    # This happens with anonymous proc types appearing in signatures
    # XXX: we need to lift these earlier
    return
  let finalTypId = if typId != nil: typId
                    else: getIdent(c.cache, paramName & ":type")
  # is this a bindOnce type class already present in the param list?
  for i in 0..<genericParams.len:
    if genericParams[i].sym.name.id == finalTypId.id:
      return genericParams[i].typ

  let owner = if typeClass.sym != nil: typeClass.sym
              else: getCurrOwner(c)
  var s = newSym(skType, finalTypId, c.idgen, owner, info)
  if sfExplain in owner.flags: s.flags.incl sfExplain
  if typId == nil: s.flags.incl(sfAnon)
  s.linkTo(typeClass)
  typeClass.flags.incl tfImplicitTypeParam
  s.position = genericParams.len
  genericParams.add newSymNode(s)
  result = typeClass
  addDecl(c, s)

proc liftParamType(c: PContext, procKind: TSymKind, genericParams: PNode,
                   paramType: PType, paramName: string,
                   info: TLineInfo, anon = false): PType =
  if paramType == nil: return # (e.g. proc return type)

  template recurse(typ: PType, anonFlag = false): untyped =
    liftParamType(c, procKind, genericParams, typ, paramName, info, anonFlag)

  var paramTypId = if not anon and paramType.sym != nil: paramType.sym.name
                   else: nil

  case paramType.kind
  of tyAnything:
    result = addImplicitGeneric(c, newTypeS(tyGenericParam, c), nil, info, genericParams, paramName)

  of tyStatic:
    if paramType.base.kind != tyNone and paramType.n != nil:
      # this is a concrete static value
      return
    if tfUnresolved in paramType.flags: return # already lifted

    let lifted = recurse(paramType.base)
    let base = (if lifted != nil: lifted else: paramType.base)
    if base.isMetaType and procKind == skMacro:
      localError(c.config, info, errMacroBodyDependsOnGenericTypes % paramName)
    result = addImplicitGeneric(c, newTypeS(tyStatic, c, base),
        paramTypId, info, genericParams, paramName)
    if result != nil: result.flags.incl({tfHasStatic, tfUnresolved})

  of tyTypeDesc:
    if tfUnresolved notin paramType.flags:
      # naked typedescs are not bindOnce types
      if paramType.base.kind == tyNone and paramTypId != nil and
          (paramTypId.id == getIdent(c.cache, "typedesc").id or
          paramTypId.id == getIdent(c.cache, "type").id):
        # XXX Why doesn't this check for tyTypeDesc instead?
        paramTypId = nil
      let t = newTypeS(tyTypeDesc, c, paramType.base)
      incl t.flags, tfCheckedForDestructor
      result = addImplicitGeneric(c, t, paramTypId, info, genericParams, paramName)
    else:
      result = nil
  of tyDistinct:
    if paramType.len == 1:
      # disable the bindOnce behavior for the type class
      result = recurse(paramType.base, true)
    else:
      result = nil
  of tyTuple:
    result = nil
    for i in 0..<paramType.len:
      let t = recurse(paramType[i])
      if t != nil:
        paramType[i] = t
        result = paramType

  of tyAlias, tyOwned:
    result = recurse(paramType.base)

  of tySequence, tySet, tyArray, tyOpenArray,
     tyVar, tyLent, tyPtr, tyRef, tyProc, tySink:
    # XXX: this is a bit strange, but proc(s: seq)
    # produces tySequence(tyGenericParam, tyNone).
    # This also seems to be true when creating aliases
    # like: type myseq = distinct seq.
    # Maybe there is another better place to associate
    # the seq type class with the seq identifier.
    if paramType.kind == tySequence and paramType.elementType.kind == tyNone:
      let typ = newTypeS(tyBuiltInTypeClass, c,
                         newTypeS(paramType.kind, c))
      result = addImplicitGeneric(c, typ, paramTypId, info, genericParams, paramName)
    else:
      result = nil
      for i in 0..<paramType.len:
        if paramType[i] == paramType:
          globalError(c.config, info, errIllegalRecursionInTypeX % typeToString(paramType))
        var lifted = recurse(paramType[i])
        if lifted != nil:
          paramType[i] = lifted
          result = paramType

  of tyGenericBody:
    result = newTypeS(tyGenericInvocation, c)
    result.rawAddSon(paramType)

    for i in 0..<paramType.len - 1:
      if paramType[i].kind == tyStatic:
        var staticCopy = paramType[i].exactReplica
        staticCopy.flags.incl tfInferrableStatic
        result.rawAddSon staticCopy
      else:
        result.rawAddSon newTypeS(tyAnything, c)

    if paramType.typeBodyImpl.kind == tyUserTypeClass:
      result.kind = tyUserTypeClassInst
      result.rawAddSon paramType.typeBodyImpl
      return addImplicitGeneric(c, result, paramTypId, info, genericParams, paramName)

    let x = instGenericContainer(c, paramType.sym.info, result,
                                  allowMetaTypes = true)
    result = newTypeS(tyCompositeTypeClass, c)
    result.rawAddSon paramType
    result.rawAddSon x
    result = addImplicitGeneric(c, result, paramTypId, info, genericParams, paramName)

  of tyGenericInst:
    result = nil
    if paramType.skipModifier.kind == tyUserTypeClass:
      var cp = copyType(paramType, c.idgen, getCurrOwner(c))
      copyTypeProps(c.graph, c.idgen.module, cp, paramType)

      cp.kind = tyUserTypeClassInst
      return addImplicitGeneric(c, cp, paramTypId, info, genericParams, paramName)

    for i in 1..<paramType.len-1:
      var lifted = recurse(paramType[i])
      if lifted != nil:
        paramType[i] = lifted
        result = paramType
        result.last.shouldHaveMeta

    let liftBody = recurse(paramType.skipModifier, true)
    if liftBody != nil:
      result = liftBody
      result.flags.incl tfHasMeta
      #result.shouldHaveMeta

  of tyGenericInvocation:
    result = nil
    for i in 1..<paramType.len:
      #if paramType[i].kind != tyTypeDesc:
      let lifted = recurse(paramType[i])
      if lifted != nil: paramType[i] = lifted

    let body = paramType.base
    if body.kind in {tyForward, tyError}:
      # this may happen for proc type appearing in a type section
      # before one of its param types
      return

    if body.last.kind == tyUserTypeClass:
      let expanded = instGenericContainer(c, info, paramType,
                                          allowMetaTypes = true)
      result = recurse(expanded, true)

  of tyUserTypeClasses, tyBuiltInTypeClass, tyCompositeTypeClass,
     tyAnd, tyOr, tyNot, tyConcept:
    result = addImplicitGeneric(c,
        copyType(paramType, c.idgen, getCurrOwner(c)), paramTypId,
        info, genericParams, paramName)

  of tyGenericParam:
    result = nil
    markUsed(c, paramType.sym.info, paramType.sym)
    onUse(paramType.sym.info, paramType.sym)
    if tfWildcard in paramType.flags:
      paramType.flags.excl tfWildcard
      paramType.sym.transitionGenericParamToType()

  else: result = nil

proc semParamType(c: PContext, n: PNode, constraint: var PNode): PType =
  ## Semchecks the type of parameters.
  if n.kind == nkCurlyExpr:
    result = semTypeNode(c, n[0], nil)
    constraint = semNodeKindConstraints(n, c.config, 1)
  elif n.kind == nkCall and
      n[0].kind in {nkIdent, nkSym, nkOpenSymChoice, nkClosedSymChoice, nkOpenSym} and
      considerQuotedIdent(c, n[0]).s == "{}":
    result = semTypeNode(c, n[1], nil)
    constraint = semNodeKindConstraints(n, c.config, 2)
  else:
    result = semTypeNode(c, n, nil)

proc newProcType(c: PContext; info: TLineInfo; prev: PType = nil): PType =
  result = newOrPrevType(tyProc, prev, c)
  result.callConv = lastOptionEntry(c).defaultCC
  result.n = newNodeI(nkFormalParams, info)
  rawAddSon(result, nil) # return type
  # result.n[0] used to be `nkType`, but now it's `nkEffectList` because
  # the effects are now stored in there too ... this is a bit hacky, but as
  # usual we desperately try to save memory:
  result.n.add newNodeI(nkEffectList, info)

proc isMagic(sym: PSym): bool =
  if sym.ast == nil: return false
  let nPragmas = sym.ast[pragmasPos]
  return hasPragma(nPragmas, wMagic)

proc semProcTypeNode(c: PContext, n, genericParams: PNode,
                     prev: PType, kind: TSymKind; isType=false): PType =
  # for historical reasons (code grows) this is invoked for parameter
  # lists too and then 'isType' is false.
  checkMinSonsLen(n, 1, c.config)
  result = newProcType(c, n.info, prev)
  var check = initIntSet()
  var counter = 0
  template isCurrentlyGeneric: bool =
    # genericParams might update as implicit generic params are added
    genericParams != nil and genericParams.len > 0

  for i in 1..<n.len:
    var a = n[i]
    if a.kind != nkIdentDefs:
      # for some generic instantiations the passed ':env' parameter
      # for closures has already been produced (see bug #898). We simply
      # skip this parameter here. It'll then be re-generated in another LL
      # pass over this instantiation:
      if a.kind == nkSym and sfFromGeneric in a.sym.flags: continue
      illFormedAst(a, c.config)

    checkMinSonsLen(a, 3, c.config)
    var
      typ: PType = nil
      def: PNode = nil
      constraint: PNode = nil
      hasType = a[^2].kind != nkEmpty
      hasDefault = a[^1].kind != nkEmpty

    if hasType:
      let isGeneric = isCurrentlyGeneric()
      inc c.inGenericContext, ord(isGeneric)
      typ = semParamType(c, a[^2], constraint)
      dec c.inGenericContext, ord(isGeneric)
      # TODO: Disallow typed/untyped in procs in the compiler/stdlib
      if kind in {skProc, skFunc} and (typ.kind == tyTyped or typ.kind == tyUntyped):
        if not isMagic(getCurrOwner(c)):
          localError(c.config, a[^2].info, "'" & typ.sym.name.s & "' is only allowed in templates and macros or magic procs")


    if hasDefault:
      def = a[^1]
      if a.len > 3:
        var msg = ""
        for j in 0 ..< a.len - 2:
          if msg.len != 0: msg.add(", ")
          msg.add($a[j])
        msg.add(" all have default value '")
        msg.add(def.renderTree)
        msg.add("', this may be unintentional, " &
          "either use ';' (semicolon) or explicitly write each default value")
        message(c.config, a.info, warnImplicitDefaultValue, msg)
      block determineType:
        if kind == skTemplate and hasUnresolvedArgs(c, def):
          # template default value depends on other parameter
          # don't do any typechecking
          def.typ = makeTypeFromExpr(c, def.copyTree)
          break determineType
        let isGeneric = isCurrentlyGeneric()
        inc c.inGenericContext, ord(isGeneric)
        def = semExprWithType(c, def, {efDetermineType, efAllowSymChoice}, typ)
        dec c.inGenericContext, ord(isGeneric)
        if def.referencesAnotherParam(getCurrOwner(c)):
          def.flags.incl nfDefaultRefsParam

      if typ == nil:
        typ = def.typ
        if isEmptyContainer(typ):
          localError(c.config, a.info, "cannot infer the type of parameter '" & $a[0] & "'")

        if typ.kind == tyTypeDesc:
          # consider a proc such as:
          # proc takesType(T = int)
          # a naive analysis may conclude that the proc type is type[int]
          # which will prevent other types from matching - clearly a very
          # surprising behavior. We must instead fix the expected type of
          # the proc to be the unbound typedesc type:
          typ = newTypeS(tyTypeDesc, c, newTypeS(tyNone, c))
          typ.flags.incl tfCheckedForDestructor

      elif def.typ.kind != tyFromExpr:
        # if def.typ != nil and def.typ.kind != tyNone:
        # example code that triggers it:
        # proc sort[T](cmp: proc(a, b: T): int = cmp)
        if not containsGenericType(typ):
          # check type compatibility between def.typ and typ:
          def = fitNode(c, typ, def, def.info)
        elif typ.kind == tyStatic:
          def = semConstExpr(c, def)
          def = fitNode(c, typ, def, def.info)
      # keep proc AST updated
      a[^1] = def

    if not hasType and not hasDefault:
      if isType: localError(c.config, a.info, "':' expected")
      if kind in {skTemplate, skMacro}:
        typ = newTypeS(tyUntyped, c)
    elif skipTypes(typ, {tyGenericInst, tyAlias, tySink}).kind == tyVoid:
      continue

    for j in 0..<a.len-2:
      var arg = newSymG(skParam, if a[j].kind == nkPragmaExpr: a[j][0] else: a[j], c)
      if arg.name.id == ord(wUnderscore):
        arg.flags.incl(sfGenSym)
      elif containsOrIncl(check, arg.name.id):
        localError(c.config, a[j].info, "attempt to redefine: '" & arg.name.s & "'")
      if a[j].kind == nkPragmaExpr:
        pragma(c, arg, a[j][1], paramPragmas)
      if not hasType and not hasDefault and kind notin {skTemplate, skMacro}:
        let param = strTableGet(c.signatures, arg.name)
        if param != nil: typ = param.typ
        else:
          localError(c.config, a.info, "parameter '$1' requires a type" % arg.name.s)
          typ = errorType(c)
      var nameForLift = arg.name.s
      if sfGenSym in arg.flags:
        nameForLift.add("`gensym" & $arg.id)
      let lifted = liftParamType(c, kind, genericParams, typ,
                                 nameForLift, arg.info)
      let finalType = if lifted != nil: lifted else: typ.skipIntLit(c.idgen)
      arg.typ = finalType
      arg.position = counter
      if constraint != nil:
        #only replace the constraint when it has been set as arg could contain codegenDecl
        arg.constraint = constraint
      inc(counter)
      if def != nil and def.kind != nkEmpty:
        arg.ast = copyTree(def)
      result.n.add newSymNode(arg)
      rawAddSon(result, finalType)
      addParamOrResult(c, arg, kind)
      styleCheckDef(c, a[j].info, arg)
      onDef(a[j].info, arg)
      a[j] = newSymNode(arg)

  var r: PType = nil
  if n[0].kind != nkEmpty:
    let isGeneric = isCurrentlyGeneric()
    inc c.inGenericContext, ord(isGeneric)
    r = semTypeNode(c, n[0], nil)
    dec c.inGenericContext, ord(isGeneric)

  if r != nil and kind in {skMacro, skTemplate} and r.kind == tyTyped:
    # XXX: To implement the proposed change in the warning, just
    # delete this entire if block. The rest is (at least at time of
    # writing this comment) already implemented.
    let info = n[0].info
    const msg = "`typed` will change its meaning in future versions of Nim. " &
                "`void` or no return type declaration at all has the same " &
                "meaning as the current meaning of `typed` as return type " &
                "declaration."
    message(c.config, info, warnDeprecated, msg)
    r = nil

  if r != nil:
    # turn explicit 'void' return type into 'nil' because the rest of the
    # compiler only checks for 'nil':
    if skipTypes(r, {tyGenericInst, tyAlias, tySink}).kind != tyVoid:
      if kind notin {skMacro, skTemplate} and r.kind in {tyTyped, tyUntyped}:
        localError(c.config, n[0].info, "return type '" & typeToString(r) &
            "' is only valid for macros and templates")
      # 'auto' as a return type does not imply a generic:
      elif r.kind == tyAnything:
        r = copyType(r, c.idgen, r.owner)
        r.flags.incl tfRetType
      elif r.kind == tyStatic:
        # type allowed should forbid this type
        discard
      else:
        if r.sym == nil or sfAnon notin r.sym.flags:
          let lifted = liftParamType(c, kind, genericParams, r, "result",
                                     n[0].info)
          if lifted != nil:
            r = lifted
            #if r.kind != tyGenericParam:
            #echo "came here for ", typeToString(r)
            r.flags.incl tfRetType
        r = skipIntLit(r, c.idgen)
        if kind == skIterator:
          # see tchainediterators
          # in cases like iterator foo(it: iterator): typeof(it)
          # we don't need to change the return type to iter[T]
          result.flags.incl tfIterator
          # XXX Would be nice if we could get rid of this
      result[0] = r
      let oldFlags = result.flags
      propagateToOwner(result, r)
      if oldFlags != result.flags:
        # XXX This rather hacky way keeps 'tflatmap' compiling:
        if tfHasMeta notin oldFlags:
          result.flags.excl tfHasMeta
      result.n.typ = r

  if isCurrentlyGeneric():
    for n in genericParams:
      if {sfUsed, sfAnon} * n.sym.flags == {}:
        result.flags.incl tfUnresolved

      if tfWildcard in n.sym.typ.flags:
        n.sym.transitionGenericParamToType()
        n.sym.typ.flags.excl tfWildcard

proc semStmtListType(c: PContext, n: PNode, prev: PType): PType =
  checkMinSonsLen(n, 1, c.config)
  for i in 0..<n.len - 1:
    n[i] = semStmt(c, n[i], {})
  if n.len > 0:
    result = semTypeNode(c, n[^1], prev)
    n.typ = result
    n[^1].typ = result
  else:
    result = nil

proc semBlockType(c: PContext, n: PNode, prev: PType): PType =
  inc(c.p.nestedBlockCounter)
  let oldBreakInLoop = c.p.breakInLoop
  c.p.breakInLoop = false
  checkSonsLen(n, 2, c.config)
  openScope(c)
  if n[0].kind notin {nkEmpty, nkSym}:
    addDecl(c, newSymS(skLabel, n[0], c))
  result = semStmtListType(c, n[1], prev)
  n[1].typ = result
  n.typ = result
  closeScope(c)
  c.p.breakInLoop = oldBreakInLoop
  dec(c.p.nestedBlockCounter)

proc semGenericParamInInvocation(c: PContext, n: PNode): PType =
  result = semTypeNode(c, n, nil)
  n.typ = makeTypeDesc(c, result)

proc trySemObjectTypeForInheritedGenericInst(c: PContext, n: PNode, t: PType): bool =
  var
    check = initIntSet()
    pos = 0
  let
    realBase = t.baseClass
    base = skipTypesOrNil(realBase, skipPtrs)
  result = true
  if base.isNil:
    localError(c.config, n.info, errIllegalRecursionInTypeX % "object")
  else:
    let concreteBase = skipGenericInvocation(base)
    if concreteBase.kind == tyObject and tfFinal notin concreteBase.flags:
      if not tryAddInheritedFields(c, check, pos, concreteBase, n):
        return false
    else:
      if concreteBase.kind != tyError:
        localError(c.config, n.info, errInheritanceOnlyWithNonFinalObjects)
  var newf = newNodeI(nkRecList, n.info)
  semRecordNodeAux(c, t.n, check, pos, newf, t)

proc containsGenericInvocationWithForward(n: PNode): bool =
  if n.kind == nkSym and n.sym.ast != nil and n.sym.ast.len > 1 and n.sym.ast[2].kind == nkObjectTy:
    for p in n.sym.ast[2][^1]:
      if p.kind == nkIdentDefs and p[1].typ != nil and p[1].typ.kind == tyGenericInvocation and
        p[1][0].kind == nkSym and p[1][0].typ.kind == tyForward:
          return true
  return false

proc semGeneric(c: PContext, n: PNode, s: PSym, prev: PType): PType =
  if s.typ == nil:
    localError(c.config, n.info, "cannot instantiate the '$1' $2" %
               [s.name.s, s.kind.toHumanStr])
    return newOrPrevType(tyError, prev, c)

  var t = s.typ.skipTypes({tyAlias})
  if t.kind == tyCompositeTypeClass and t.base.kind == tyGenericBody:
    t = t.base
  result = newOrPrevType(tyGenericInvocation, prev, c)
  addSonSkipIntLit(result, t, c.idgen)

  template addToResult(typ, skip) =

    if typ.isNil:
      internalAssert c.config, false
      rawAddSon(result, typ)
    else:
      if skip:
        addSonSkipIntLit(result, typ, c.idgen)
      else:
        rawAddSon(result, makeRangeWithStaticExpr(c, typ.n))

  if t.kind == tyForward:
    for i in 1..<n.len:
      var elem = semGenericParamInInvocation(c, n[i])
      addToResult(elem, true)
    return
  elif t.kind != tyGenericBody:
    # we likely got code of the form TypeA[TypeB] where TypeA is
    # not generic.
    localError(c.config, n.info, errNoGenericParamsAllowedForX % s.name.s)
    return newOrPrevType(tyError, prev, c)
  else:
    var m = newCandidate(c, t)
    m.isNoCall = true
    matches(c, n, copyTree(n), m)

    if m.state != csMatch:
      var err = "cannot instantiate "
      err.addTypeHeader(c.config, t)
      err.add "\ngot: <$1>\nbut expected: <$2>" % [describeArgs(c, n), describeArgs(c, t.n, 0)]
      localError(c.config, n.info, errGenerated, err)
      return newOrPrevType(tyError, prev, c)

    var isConcrete = true
    let rType = m.call[0].typ
    let mIndex = if rType != nil: rType.len - 1 else: -1
    for i in 1..<m.call.len:
      var typ = m.call[i].typ
      # is this a 'typedesc' *parameter*? If so, use the typedesc type,
      # unstripped.
      if m.call[i].kind == nkSym and m.call[i].sym.kind == skParam and
          typ.kind == tyTypeDesc and containsGenericType(typ):
        isConcrete = false
        addToResult(typ, true)
      else:
        typ = typ.skipTypes({tyTypeDesc})
        if containsGenericType(typ): isConcrete = false
        var skip = true
        if mIndex >= i - 1 and tfImplicitStatic in rType[i - 1].flags and isIntLit(typ):
          skip = false
        addToResult(typ, skip)

    if isConcrete:
      if s.ast == nil and s.typ.kind != tyCompositeTypeClass:
        # XXX: What kind of error is this? is it still relevant?
        localError(c.config, n.info, errCannotInstantiateX % s.name.s)
        result = newOrPrevType(tyError, prev, c)
      elif containsGenericInvocationWithForward(n[0]):
        c.skipTypes.add n #fixes 1500
      else:
        result = instGenericContainer(c, n.info, result,
                                      allowMetaTypes = false)

  # special check for generic object with
  # generic/partial specialized parent
  let tx = result.skipTypes(abstractPtrs, 50)
  if tx.isNil or isTupleRecursive(tx):
    localError(c.config, n.info, "illegal recursion in type '$1'" % typeToString(result[0]))
    return errorType(c)
  if tx != result and tx.kind == tyObject:
    if tx[0] != nil:
      if not trySemObjectTypeForInheritedGenericInst(c, n, tx):
        return newOrPrevType(tyError, prev, c)
    var position = 0
    recomputeFieldPositions(tx, tx.n, position)

proc maybeAliasType(c: PContext; typeExpr, prev: PType): PType =
  if prev != nil and (prev.kind == tyGenericBody or
      typeExpr.kind in {tyObject, tyEnum, tyDistinct, tyForward, tyGenericBody}):
    result = newTypeS(tyAlias, c)
    result.rawAddSon typeExpr
    result.sym = prev.sym
    if prev.kind != tyGenericBody:
      assignType(prev, result)
  else:
    result = nil

proc fixupTypeOf(c: PContext, prev: PType, typExpr: PNode) =
  if prev != nil:
    let result = newTypeS(tyAlias, c)
    result.rawAddSon typExpr.typ
    result.sym = prev.sym
    if prev.kind != tyGenericBody:
      assignType(prev, result)

proc semTypeExpr(c: PContext, n: PNode; prev: PType): PType =
  var n = semExprWithType(c, n, {efDetermineType})
  if n.typ.kind == tyTypeDesc:
    result = n.typ.base
    # fix types constructed by macros/template:
    if prev != nil and prev.kind != tyGenericBody and prev.sym != nil:
      if result.sym.isNil:
        # Behold! you're witnessing enormous power yielded
        # by macros. Only macros can summon unnamed types
        # and cast spell upon AST. Here we need to give
        # it a name taken from left hand side's node
        result.sym = prev.sym
        result.sym.typ = result
      else:
        # Less powerful routine like template do not have
        # the ability to produce unnamed types. But still
        # it has wild power to push a type a bit too far.
        # So we need to hold it back using alias and prevent
        # unnecessary new type creation
        let alias = maybeAliasType(c, result, prev)
        if alias != nil: result = alias
  elif n.typ.kind == tyFromExpr and c.inGenericContext > 0:
    # sometimes not possible to distinguish type from value in generic body,
    # for example `T.Foo`, so both are handled under `tyFromExpr`
    result = n.typ
  else:
    localError(c.config, n.info, "expected type, but got: " & n.renderTree)
    result = errorType(c)

proc freshType(c: PContext; res, prev: PType): PType {.inline.} =
  if prev.isNil or prev.kind == tyGenericBody:
    result = copyType(res, c.idgen, res.owner)
    copyTypeProps(c.graph, c.idgen.module, result, res)
  else:
    result = res

template modifierTypeKindOfNode(n: PNode): TTypeKind =
  case n.kind
  of nkVarTy: tyVar
  of nkRefTy: tyRef
  of nkPtrTy: tyPtr
  of nkStaticTy: tyStatic
  of nkTypeOfExpr: tyTypeDesc
  else: tyNone

proc semTypeClass(c: PContext, n: PNode, prev: PType): PType =
  # if n.len == 0: return newConstraint(c, tyTypeClass)
  if isNewStyleConcept(n):
    result = newOrPrevType(tyConcept, prev, c)
    result.flags.incl tfCheckedForDestructor
    result.n = semConceptDeclaration(c, n)
    return result

  let
    pragmas = n[1]
    inherited = n[2]

  var owner = getCurrOwner(c)
  var candidateTypeSlot = newTypeS(tyAlias, c, c.errorType)
  result = newOrPrevType(tyUserTypeClass, prev, c, son = candidateTypeSlot)
  result.flags.incl tfCheckedForDestructor
  result.n = n

  if inherited.kind != nkEmpty:
    for n in inherited.sons:
      let typ = semTypeNode(c, n, nil)
      result.add(typ)

  openScope(c)
  for param in n[0]:
    var
      dummyName: PNode
      dummyType: PType

    let modifier = param.modifierTypeKindOfNode

    if modifier != tyNone:
      dummyName = param[0]
      dummyType = c.makeTypeWithModifier(modifier, candidateTypeSlot)
      # if modifier == tyRef:
        # dummyType.flags.incl tfNotNil
      if modifier == tyTypeDesc:
        dummyType.flags.incl tfConceptMatchedTypeSym
        dummyType.flags.incl tfCheckedForDestructor
    else:
      dummyName = param
      dummyType = candidateTypeSlot

    # this can be true for 'nim check' on incomplete concepts,
    # see bug #8230
    if dummyName.kind == nkEmpty: continue

    internalAssert c.config, dummyName.kind == nkIdent
    var dummyParam = newSym(if modifier == tyTypeDesc: skType else: skVar,
                            dummyName.ident, c.idgen, owner, param.info)
    dummyParam.typ = dummyType
    incl dummyParam.flags, sfUsed
    addDecl(c, dummyParam)

  result.n[3] = semConceptBody(c, n[3])
  closeScope(c)

proc applyTypeSectionPragmas(c: PContext; pragmas, operand: PNode): PNode =
  result = nil
  for p in pragmas:
    let key = if p.kind in nkPragmaCallKinds and p.len >= 1: p[0] else: p
    if p.kind == nkEmpty or whichPragma(p) != wInvalid:
      discard "builtin pragma"
    else:
      trySuggestPragmas(c, key)
      let ident =
        if key.kind in nkIdentKinds:
          considerQuotedIdent(c, key)
        else:
          nil
      if ident != nil and strTableGet(c.userPragmas, ident) != nil:
        discard "User-defined pragma"
      else:
        let sym = qualifiedLookUp(c, key, {})
        # XXX: What to do here if amb is true?
        if sym != nil and sfCustomPragma in sym.flags:
          discard "Custom user pragma"
        else:
          # we transform ``(arg1, arg2: T) {.m, rest.}`` into ``m((arg1, arg2: T) {.rest.})`` and
          # let the semantic checker deal with it:
          var x = newNodeI(nkCall, key.info)
          x.add(key)
          if p.kind in nkPragmaCallKinds and p.len > 1:
            # pass pragma arguments to the macro too:
            for i in 1 ..< p.len:
              x.add(p[i])
          # Also pass the node the pragma has been applied to
          x.add(operand.copyTreeWithoutNode(p))
          # recursion assures that this works for multiple macro annotations too:
          var r = semOverloadedCall(c, x, x, {skMacro, skTemplate}, {efNoUndeclared})
          if r != nil:
            doAssert r[0].kind == nkSym
            let m = r[0].sym
            case m.kind
            of skMacro: return semMacroExpr(c, r, r, m, {efNoSemCheck})
            of skTemplate: return semTemplateExpr(c, r, m, {efNoSemCheck})
            else: doAssert(false, "cannot happen")

proc semProcTypeWithScope(c: PContext, n: PNode,
                          prev: PType, kind: TSymKind): PType =
  checkSonsLen(n, 2, c.config)

  if n[1].kind != nkEmpty and n[1].len > 0:
    let macroEval = applyTypeSectionPragmas(c, n[1], n)
    if macroEval != nil:
      return semTypeNode(c, macroEval, prev)

  openScope(c)
  result = semProcTypeNode(c, n[0], nil, prev, kind, isType=true)
  # start with 'ccClosure', but of course pragmas can overwrite this:
  result.callConv = ccClosure
  # dummy symbol for `pragma`:
  var s = newSymS(kind, newIdentNode(getIdent(c.cache, "dummy"), n.info), c)
  s.typ = result
  if n[1].kind != nkEmpty and n[1].len > 0:
    pragma(c, s, n[1], procTypePragmas)
    when useEffectSystem: setEffectsForProcType(c.graph, result, n[1])
  elif c.optionStack.len > 0:
    # we construct a fake 'nkProcDef' for the 'mergePragmas' inside 'implicitPragmas'...
    s.ast = newTree(nkProcDef, newNodeI(nkEmpty, n.info), newNodeI(nkEmpty, n.info),
        newNodeI(nkEmpty, n.info), newNodeI(nkEmpty, n.info), newNodeI(nkEmpty, n.info))
    implicitPragmas(c, s, n.info, {wTags, wRaises})
    when useEffectSystem: setEffectsForProcType(c.graph, result, s.ast[pragmasPos])
  closeScope(c)

proc symFromExpectedTypeNode(c: PContext, n: PNode): PSym =
  if n.kind == nkType:
    result = symFromType(c, n.typ, n.info)
  else:
    localError(c.config, n.info, errTypeExpected)
    result = errorSym(c, n)

proc semStaticType(c: PContext, childNode: PNode, prev: PType): PType =
  result = newOrPrevType(tyStatic, prev, c)
  var base = semTypeNode(c, childNode, nil).skipTypes({tyTypeDesc, tyAlias})
  result.rawAddSon(base)
  result.flags.incl tfHasStatic

proc semTypeOf(c: PContext; n: PNode; prev: PType): PType =
  openScope(c)
  inc c.inTypeofContext
  defer: dec c.inTypeofContext # compiles can raise an exception
  let t = semExprWithType(c, n, {efInTypeof})
  closeScope(c)
  fixupTypeOf(c, prev, t)
  result = t.typ
  if result.kind == tyFromExpr:
    result.flags.incl tfNonConstExpr

proc semTypeOf2(c: PContext; n: PNode; prev: PType): PType =
  openScope(c)
  var m = BiggestInt 1 # typeOfIter
  if n.len == 3:
    let mode = semConstExpr(c, n[2])
    if mode.kind != nkIntLit:
      localError(c.config, n.info, "typeof: cannot evaluate 'mode' parameter at compile-time")
    else:
      m = mode.intVal
  inc c.inTypeofContext
  defer: dec c.inTypeofContext # compiles can raise an exception
  let t = semExprWithType(c, n[1], if m == 1: {efInTypeof} else: {})
  closeScope(c)
  fixupTypeOf(c, prev, t)
  result = t.typ
  if result.kind == tyFromExpr:
    result.flags.incl tfNonConstExpr

proc semTypeIdent(c: PContext, n: PNode): PSym =
  if n.kind == nkSym:
    result = getGenSym(c, n.sym)
  else:
    result = pickSym(c, n, {skType, skGenericParam, skParam})
    if result.isNil:
      result = qualifiedLookUp(c, n, {checkAmbiguity, checkUndeclared})
    if result != nil:
      markUsed(c, n.info, result)
      onUse(n.info, result)

      # alias syntax, see semSym for skTemplate, skMacro
      if result.kind in {skTemplate, skMacro} and sfNoalias notin result.flags:
        let t = semTypeExpr(c, n, nil)
        result = symFromType(c, t, n.info)

      if result.kind == skParam and result.typ.kind == tyTypeDesc:
        # This is a typedesc param. is it already bound?
        # it's not bound when it's used multiple times in the
        # proc signature for example
        if c.inGenericInst > 0:
          let bound = result.typ.elementType.sym
          if bound != nil: return bound
          return result
        if result.typ.sym == nil:
          localError(c.config, n.info, errTypeExpected)
          return errorSym(c, n)
        result = result.typ.sym.copySym(c.idgen)
        result.typ = exactReplica(result.typ)
        result.typ.flags.incl tfUnresolved

      if result.kind == skGenericParam:
        if result.typ.kind == tyGenericParam and result.typ.len == 0 and
           tfWildcard in result.typ.flags:
          # collapse the wild-card param to a type
          result.transitionGenericParamToType()
          result.typ.flags.excl tfWildcard
          return
        else:
          localError(c.config, n.info, errTypeExpected)
          return errorSym(c, n)
      if result.kind != skType and result.magic notin {mStatic, mType, mTypeOf}:
        # this implements the wanted ``var v: V, x: V`` feature ...
        var ov: TOverloadIter = default(TOverloadIter)
        var amb = initOverloadIter(ov, c, n)
        while amb != nil and amb.kind != skType:
          amb = nextOverloadIter(ov, c, n)
        if amb != nil: result = amb
        else:
          if result.kind != skError: localError(c.config, n.info, errTypeExpected)
          return errorSym(c, n)
      if result.typ.kind != tyGenericParam:
        # XXX get rid of this hack!
        var oldInfo = n.info
        when defined(useNodeIds):
          let oldId = n.id
        reset(n[])
        when defined(useNodeIds):
          n.id = oldId
        n.transitionNoneToSym()
        n.sym = result
        n.info = oldInfo
        n.typ = result.typ
    else:
      localError(c.config, n.info, "identifier expected")
      result = errorSym(c, n)

proc semTypeNode(c: PContext, n: PNode, prev: PType): PType =
  result = nil
  inc c.inTypeContext

  if c.config.cmd == cmdIdeTools: suggestExpr(c, n)
  case n.kind
  of nkEmpty: result = n.typ
  of nkTypeOfExpr:
    # for ``typeof(countup(1,3))``, see ``tests/ttoseq``.
    checkSonsLen(n, 1, c.config)
    result = semTypeOf(c, n[0], prev)
    if result.kind == tyTypeDesc: result.flags.incl tfExplicit
  of nkPar:
    if n.len == 1: result = semTypeNode(c, n[0], prev)
    else:
      result = semAnonTuple(c, n, prev)
  of nkTupleConstr: result = semAnonTuple(c, n, prev)
  of nkCallKinds:
    let x = n[0]
    let ident = x.getPIdent
    if ident != nil and ident.s == "[]":
      let b = newNodeI(nkBracketExpr, n.info)
      for i in 1..<n.len: b.add(n[i])
      result = semTypeNode(c, b, prev)
    elif ident != nil and ident.id == ord(wDotDot):
      result = semRangeAux(c, n, prev)
    elif n[0].kind == nkNilLit and n.len == 2:
      result = semTypeNode(c, n[1], prev)
      if result.skipTypes({tyGenericInst, tyAlias, tySink, tyOwned}).kind in NilableTypes+GenericTypes:
        if tfNotNil in result.flags:
          result = freshType(c, result, prev)
          result.flags.excl(tfNotNil)
      else:
        localError(c.config, n.info, errGenerated, "invalid type")
    elif n[0].kind notin nkIdentKinds:
      result = semTypeExpr(c, n, prev)
    else:
      let op = considerQuotedIdent(c, n[0])
      if op.id == ord(wAnd) or op.id == ord(wOr) or op.s == "|":
        checkSonsLen(n, 3, c.config)
        var
          t1 = semTypeNode(c, n[1], nil)
          t2 = semTypeNode(c, n[2], nil)
        if t1 == nil:
          localError(c.config, n[1].info, errTypeExpected)
          result = newOrPrevType(tyError, prev, c)
        elif t2 == nil:
          localError(c.config, n[2].info, errTypeExpected)
          result = newOrPrevType(tyError, prev, c)
        else:
          result = if op.id == ord(wAnd): makeAndType(c, t1, t2)
                   else: makeOrType(c, t1, t2)
      elif op.id == ord(wNot):
        case n.len
        of 3:
          result = semTypeNode(c, n[1], prev)
          if result.kind == tyTypeDesc and tfUnresolved notin result.flags:
            result = result.base
          if n[2].kind != nkNilLit:
            localError(c.config, n.info,
              "Invalid syntax. When used with a type, 'not' can be followed only by 'nil'")
          if notnil notin c.features and strictNotNil notin c.features:
            localError(c.config, n.info,
              "enable the 'not nil' annotation with {.experimental: \"notnil\".} or " &
              "  the `strict not nil` annotation with {.experimental: \"strictNotNil\".} " &
              "  the \"notnil\" one is going to be deprecated, so please use \"strictNotNil\"")
          let resolvedType = result.skipTypes({tyGenericInst, tyAlias, tySink, tyOwned})
          case resolvedType.kind
          of tyGenericParam, tyTypeDesc, tyFromExpr:
            # XXX: This is a really inappropraite hack, but it solves
            # https://github.com/nim-lang/Nim/issues/4907 for now.
            #
            # A proper solution is to introduce a new type kind such
            # as `tyNotNil[tyRef[SomeGenericParam]]`. This will allow
            # semtypinst to replace the generic param correctly in
            # situations like the following:
            #
            # type Foo[T] = object
            #   bar: ref T not nil
            #   baz: ref T
            #
            # The root of the problem is that `T` here must have a specific
            # ID that is bound to a concrete type during instantiation.
            # The use of `freshType` below breaks this. Another hack would
            # be to reuse the same ID for the not nil type, but this will
            # fail if the `T` parameter is referenced multiple times as in
            # the example above.
            #
            # I suggest revisiting this once the language decides on whether
            # `not nil` should be the default. We can then map nilable refs
            # to other types such as `Option[T]`.
            result = makeTypeFromExpr(c, newTree(nkStmtListType, n.copyTree))
          of NilableTypes + {tyGenericInvocation, tyForward}:
            result = freshType(c, result, prev)
            result.flags.incl(tfNotNil)
          else:
            localError(c.config, n.info, errGenerated, "invalid type")
        of 2:
          let negated = semTypeNode(c, n[1], prev)
          result = makeNotType(c, negated)
        else:
          localError(c.config, n.info, errGenerated, "invalid type")
      elif op.id == ord(wPtr):
        result = semAnyRef(c, n, tyPtr, prev)
      elif op.id == ord(wRef):
        result = semAnyRef(c, n, tyRef, prev)
      elif op.id == ord(wType):
        checkSonsLen(n, 2, c.config)
        result = semTypeOf(c, n[1], prev)
      elif op.s == "typeof" and (
          (n[0].kind == nkSym and n[0].sym.magic == mTypeOf) or
          (n[0].kind == nkOpenSym and n[0][0].sym.magic == mTypeOf)):
        result = semTypeOf2(c, n, prev)
      elif op.s == "owned" and optOwnedRefs notin c.config.globalOptions and n.len == 2:
        result = semTypeExpr(c, n[1], prev)
      else:
        result = semTypeExpr(c, n, prev)
  of nkWhenStmt:
    var whenResult = semWhen(c, n, false)
    if whenResult.kind == nkStmtList: whenResult.transitionSonsKind(nkStmtListType)
    if whenResult.kind == nkWhenStmt:
      result = whenResult.typ
    else:
      result = semTypeNode(c, whenResult, prev)
  of nkBracketExpr:
    checkMinSonsLen(n, 2, c.config)
    var head = n[0]
    var s = if head.kind notin nkCallKinds: semTypeIdent(c, head)
            else: symFromExpectedTypeNode(c, semExpr(c, head))
    case s.magic
    of mArray: result = semArray(c, n, prev)
    of mOpenArray: result = semContainer(c, n, tyOpenArray, "openarray", prev)
    of mUncheckedArray: result = semContainer(c, n, tyUncheckedArray, "UncheckedArray", prev)
    of mRange: result = semRange(c, n, prev)
    of mSet: result = semSet(c, n, prev)
    of mOrdinal: result = semOrdinal(c, n, prev)
    of mIterableType: result = semIterableType(c, n, prev)
    of mSeq:
      result = semContainer(c, n, tySequence, "seq", prev)
      if optSeqDestructors in c.config.globalOptions:
        incl result.flags, tfHasAsgn
    of mVarargs: result = semVarargs(c, n, prev)
    of mTypeDesc, mType, mTypeOf:
      result = makeTypeDesc(c, semTypeNode(c, n[1], nil))
      result.flags.incl tfExplicit
    of mStatic:
      result = semStaticType(c, n[1], prev)
    of mExpr:
      result = semTypeNode(c, n[0], nil)
      if result != nil:
        let old = result
        result = copyType(result, c.idgen, getCurrOwner(c))
        copyTypeProps(c.graph, c.idgen.module, result, old)
        for i in 1..<n.len:
          result.rawAddSon(semTypeNode(c, n[i], nil))
    of mDistinct:
      result = newOrPrevType(tyDistinct, prev, c)
      addSonSkipIntLit(result, semTypeNode(c, n[1], nil), c.idgen)
    of mVar:
      result = newOrPrevType(tyVar, prev, c)
      var base = semTypeNode(c, n[1], nil)
      if base.kind in {tyVar, tyLent}:
        localError(c.config, n.info, "type 'var var' is not allowed")
        base = base[0]
      addSonSkipIntLit(result, base, c.idgen)
    of mRef: result = semAnyRef(c, n, tyRef, prev)
    of mPtr: result = semAnyRef(c, n, tyPtr, prev)
    of mTuple: result = semTuple(c, n, prev)
    of mBuiltinType:
      case s.name.s
      of "lent": result = semAnyRef(c, n, tyLent, prev)
      of "sink": result = semAnyRef(c, n, tySink, prev)
      of "owned": result = semAnyRef(c, n, tyOwned, prev)
      else: result = semGeneric(c, n, s, prev)
    else: result = semGeneric(c, n, s, prev)
  of nkDotExpr:
    let typeExpr = semExpr(c, n)
    if typeExpr.typ.isNil:
      localError(c.config, n.info, "object constructor needs an object type;" &
          " for named arguments use '=' instead of ':'")
      result = errorType(c)
    elif typeExpr.typ.kind == tyFromExpr:
      result = typeExpr.typ
    elif typeExpr.typ.kind != tyTypeDesc:
      localError(c.config, n.info, errTypeExpected)
      result = errorType(c)
    else:
      result = typeExpr.typ.base
      if result.isMetaType and
         result.kind != tyUserTypeClass:
           # the dot expression may refer to a concept type in
           # a different module. allow a normal alias then.
        let preprocessed = semGenericStmt(c, n)
        result = makeTypeFromExpr(c, preprocessed.copyTree)
      else:
        let alias = maybeAliasType(c, result, prev)
        if alias != nil: result = alias
  of nkIdent, nkAccQuoted:
    var s = semTypeIdent(c, n)
    if s.typ == nil:
      if s.kind != skError: localError(c.config, n.info, errTypeExpected)
      result = newOrPrevType(tyError, prev, c)
    elif s.kind == skParam and s.typ.kind == tyTypeDesc:
      internalAssert c.config, s.typ.base.kind != tyNone and prev == nil
      result = s.typ.base
    elif prev == nil:
      result = s.typ
    else:
      let alias = maybeAliasType(c, s.typ, prev)
      if alias != nil:
        result = alias
      elif prev.kind == tyGenericBody:
        result = s.typ
      else:
        assignType(prev, s.typ)
        # bugfix: keep the fresh id for aliases to integral types:
        if s.typ.kind notin {tyBool, tyChar, tyInt..tyInt64, tyFloat..tyFloat128,
                             tyUInt..tyUInt64}:
          prev.itemId = s.typ.itemId
        result = prev
  of nkSym:
    let s = getGenSym(c, n.sym)
    if s.typ != nil and (s.kind == skType or s.typ.kind == tyTypeDesc):
      var t =
        if s.kind == skType:
          s.typ
        else:
          internalAssert c.config, s.typ.base.kind != tyNone and prev == nil
          s.typ.base
      let alias = maybeAliasType(c, t, prev)
      if alias != nil:
        result = alias
      elif prev == nil or prev.kind == tyGenericBody:
        result = t
      else:
        assignType(prev, t)
        result = prev
      markUsed(c, n.info, n.sym)
      onUse(n.info, n.sym)
    else:
      if s.kind != skError:
        if s.typ == nil:
          localError(c.config, n.info, "type expected, but symbol '$1' has no type." % [s.name.s])
        else:
          localError(c.config, n.info, "type expected, but got symbol '$1' of kind '$2'" %
            [s.name.s, s.kind.toHumanStr])
      result = newOrPrevType(tyError, prev, c)
  of nkObjectTy: result = semObjectNode(c, n, prev, {})
  of nkTupleTy: result = semTuple(c, n, prev)
  of nkTupleClassTy: result = newConstraint(c, tyTuple)
  of nkTypeClassTy: result = semTypeClass(c, n, prev)
  of nkRefTy: result = semAnyRef(c, n, tyRef, prev)
  of nkPtrTy: result = semAnyRef(c, n, tyPtr, prev)
  of nkVarTy: result = semVarOutType(c, n, prev, {})
  of nkOutTy: result = semVarOutType(c, n, prev, {tfIsOutParam})
  of nkDistinctTy: result = semDistinct(c, n, prev)
  of nkStaticTy: result = semStaticType(c, n[0], prev)
  of nkProcTy, nkIteratorTy:
    if n.len == 0 or n[0].kind == nkEmpty:
      # 0 length or empty param list with possible pragmas imply typeclass
      result = newTypeS(tyBuiltInTypeClass, c)
      let child = newTypeS(tyProc, c)
      if n.kind == nkIteratorTy:
        child.flags.incl tfIterator
      if n.len > 0 and n[1].kind != nkEmpty and n[1].len > 0:
        # typeclass with pragma
        let symKind = if n.kind == nkIteratorTy: skIterator else: skProc
        # dummy symbol for `pragma`:
        var s = newSymS(symKind, newIdentNode(getIdent(c.cache, "dummy"), n.info), c)
        s.typ = child
        # for now only call convention pragmas supported in proc typeclass
        pragma(c, s, n[1], {FirstCallConv..LastCallConv})
      result.addSonSkipIntLit(child, c.idgen)
    else:
      let symKind = if n.kind == nkIteratorTy: skIterator else: skProc
      result = semProcTypeWithScope(c, n, prev, symKind)
      if result == nil:
        localError(c.config, n.info, "type expected, but got: " & renderTree(n))
        result = newOrPrevType(tyError, prev, c)

      if n.kind == nkIteratorTy and result.kind == tyProc:
        result.flags.incl(tfIterator)
      if result.callConv == ccClosure and c.config.selectedGC in {gcArc, gcOrc, gcAtomicArc}:
        result.flags.incl tfHasAsgn
  of nkEnumTy: result = semEnum(c, n, prev)
  of nkType: result = n.typ
  of nkStmtListType: result = semStmtListType(c, n, prev)
  of nkBlockType: result = semBlockType(c, n, prev)
  of nkOpenSym: result = semTypeNode(c, n[0], prev)
  else:
    result = semTypeExpr(c, n, prev)
    when false:
      localError(c.config, n.info, "type expected, but got: " & renderTree(n))
      result = newOrPrevType(tyError, prev, c)
  n.typ = result
  dec c.inTypeContext

proc setMagicType(conf: ConfigRef; m: PSym, kind: TTypeKind, size: int) =
  # source : https://en.wikipedia.org/wiki/Data_structure_alignment#x86
  m.typ.kind = kind
  m.typ.size = size
  # this usually works for most basic types
  # Assuming that since ARM, ARM64  don't support unaligned access
  # data is aligned to type size
  m.typ.align = size.int16

  # FIXME: proper support for clongdouble should be added.
  # long double size can be 8, 10, 12, 16 bytes depending on platform & compiler
  if kind in {tyFloat64, tyFloat, tyInt, tyUInt, tyInt64, tyUInt64} and size == 8:
    m.typ.align = int16(conf.floatInt64Align)

proc setMagicIntegral(conf: ConfigRef; m: PSym, kind: TTypeKind, size: int) =
  setMagicType(conf, m, kind, size)
  incl m.typ.flags, tfCheckedForDestructor

proc processMagicType(c: PContext, m: PSym) =
  case m.magic
  of mInt: setMagicIntegral(c.config, m, tyInt, c.config.target.intSize)
  of mInt8: setMagicIntegral(c.config, m, tyInt8, 1)
  of mInt16: setMagicIntegral(c.config, m, tyInt16, 2)
  of mInt32: setMagicIntegral(c.config, m, tyInt32, 4)
  of mInt64: setMagicIntegral(c.config, m, tyInt64, 8)
  of mUInt: setMagicIntegral(c.config, m, tyUInt, c.config.target.intSize)
  of mUInt8: setMagicIntegral(c.config, m, tyUInt8, 1)
  of mUInt16: setMagicIntegral(c.config, m, tyUInt16, 2)
  of mUInt32: setMagicIntegral(c.config, m, tyUInt32, 4)
  of mUInt64: setMagicIntegral(c.config, m, tyUInt64, 8)
  of mFloat: setMagicIntegral(c.config, m, tyFloat, c.config.target.floatSize)
  of mFloat32: setMagicIntegral(c.config, m, tyFloat32, 4)
  of mFloat64: setMagicIntegral(c.config, m, tyFloat64, 8)
  of mFloat128: setMagicIntegral(c.config, m, tyFloat128, 16)
  of mBool: setMagicIntegral(c.config, m, tyBool, 1)
  of mChar: setMagicIntegral(c.config, m, tyChar, 1)
  of mString:
    setMagicType(c.config, m, tyString, szUncomputedSize)
    rawAddSon(m.typ, getSysType(c.graph, m.info, tyChar))
    if optSeqDestructors in c.config.globalOptions:
      incl m.typ.flags, tfHasAsgn
  of mCstring:
    setMagicIntegral(c.config, m, tyCstring, c.config.target.ptrSize)
    rawAddSon(m.typ, getSysType(c.graph, m.info, tyChar))
  of mPointer: setMagicIntegral(c.config, m, tyPointer, c.config.target.ptrSize)
  of mNil: setMagicType(c.config, m, tyNil, c.config.target.ptrSize)
  of mExpr:
    if m.name.s == "auto":
      setMagicIntegral(c.config, m, tyAnything, 0)
    else:
      setMagicIntegral(c.config, m, tyUntyped, 0)
  of mStmt:
    setMagicIntegral(c.config, m, tyTyped, 0)
  of mTypeDesc, mType:
    setMagicIntegral(c.config, m, tyTypeDesc, 0)
    rawAddSon(m.typ, newTypeS(tyNone, c))
  of mStatic:
    setMagicType(c.config, m, tyStatic, 0)
    rawAddSon(m.typ, newTypeS(tyNone, c))
  of mVoidType:
    setMagicIntegral(c.config, m, tyVoid, 0)
  of mArray:
    setMagicType(c.config, m, tyArray, szUncomputedSize)
  of mOpenArray:
    setMagicType(c.config, m, tyOpenArray, szUncomputedSize)
  of mVarargs:
    setMagicType(c.config, m, tyVarargs, szUncomputedSize)
  of mRange:
    setMagicIntegral(c.config, m, tyRange, szUncomputedSize)
    rawAddSon(m.typ, newTypeS(tyNone, c))
  of mSet:
    setMagicIntegral(c.config, m, tySet, szUncomputedSize)
  of mUncheckedArray:
    setMagicIntegral(c.config, m, tyUncheckedArray, szUncomputedSize)
  of mSeq:
    setMagicType(c.config, m, tySequence, szUncomputedSize)
    if optSeqDestructors in c.config.globalOptions:
      incl m.typ.flags, tfHasAsgn
    if defined(nimsuggest) or c.config.cmd == cmdCheck: # bug #18985
      discard
    else:
      assert c.graph.sysTypes[tySequence] == nil
    c.graph.sysTypes[tySequence] = m.typ
  of mOrdinal:
    setMagicIntegral(c.config, m, tyOrdinal, szUncomputedSize)
    rawAddSon(m.typ, newTypeS(tyNone, c))
  of mIterableType:
    setMagicIntegral(c.config, m, tyIterable, 0)
    rawAddSon(m.typ, newTypeS(tyNone, c))
  of mPNimrodNode:
    incl m.typ.flags, tfTriggersCompileTime
    incl m.typ.flags, tfCheckedForDestructor
  of mException: discard
  of mBuiltinType:
    case m.name.s
    of "lent": setMagicType(c.config, m, tyLent, c.config.target.ptrSize)
    of "sink": setMagicType(c.config, m, tySink, szUncomputedSize)
    of "owned":
      setMagicType(c.config, m, tyOwned, c.config.target.ptrSize)
      incl m.typ.flags, tfHasOwned
    else: localError(c.config, m.info, errTypeExpected)
  else: localError(c.config, m.info, errTypeExpected)

proc semGenericConstraints(c: PContext, x: PType): PType =
  result = newTypeS(tyGenericParam, c, x)

proc semGenericParamList(c: PContext, n: PNode, father: PType = nil): PNode =

  template addSym(result: PNode, s: PSym): untyped =
    if father != nil: addSonSkipIntLit(father, s.typ, c.idgen)
    if sfGenSym notin s.flags: addDecl(c, s)
    result.add newSymNode(s)

  result = copyNode(n)
  if n.kind != nkGenericParams:
    illFormedAst(n, c.config)
    return
  for i in 0..<n.len:
    var a = n[i]
    case a.kind
    of nkSym: result.addSym(a.sym)
    of nkIdentDefs:
      var def = a[^1]
      let constraint = a[^2]
      var typ: PType = nil

      if constraint.kind != nkEmpty:
        typ = semTypeNode(c, constraint, nil)
        if typ.kind != tyStatic or typ.len == 0:
          if typ.kind == tyTypeDesc:
            if typ.elementType.kind == tyNone:
              typ = newTypeS(tyTypeDesc, c, newTypeS(tyNone, c))
              incl typ.flags, tfCheckedForDestructor
          else:
            typ = semGenericConstraints(c, typ)

      if def.kind != nkEmpty:
        def = semConstExpr(c, def)
        if typ == nil:
          if def.typ.kind != tyTypeDesc:
            typ = newTypeS(tyStatic, c, def.typ)
        else:
          # the following line fixes ``TV2*[T:SomeNumber=TR] = array[0..1, T]``
          # from manyloc/named_argument_bug/triengine:
          def.typ = def.typ.skipTypes({tyTypeDesc})
          if not containsGenericType(def.typ):
            def = fitNode(c, typ, def, def.info)

      if typ == nil:
        typ = newTypeS(tyGenericParam, c)
        if father == nil: typ.flags.incl tfWildcard

      typ.flags.incl tfGenericTypeParam

      for j in 0..<a.len-2:
        var finalType: PType
        if j == 0:
          finalType = typ
        else:
          finalType = copyType(typ, c.idgen, typ.owner)
          copyTypeProps(c.graph, c.idgen.module, finalType, typ)
        # it's important the we create an unique
        # type for each generic param. the index
        # of the parameter will be stored in the
        # attached symbol.
        var paramName = a[j]
        var covarianceFlag = tfUnresolved

        if paramName.safeLen == 2:
          if not nimEnableCovariance or paramName[0].ident.s == "in":
            if father == nil or sfImportc notin father.sym.flags:
              localError(c.config, paramName.info, errInOutFlagNotExtern % $paramName[0])
          covarianceFlag = if paramName[0].ident.s == "in": tfContravariant
                          else: tfCovariant
          if father != nil: father.flags.incl tfCovariant
          paramName = paramName[1]

        var s = if finalType.kind == tyStatic or tfWildcard in typ.flags:
            newSymG(skGenericParam, paramName, c).linkTo(finalType)
          else:
            newSymG(skType, paramName, c).linkTo(finalType)

        if covarianceFlag != tfUnresolved: s.typ.flags.incl(covarianceFlag)
        if def.kind != nkEmpty: s.ast = def
        s.position = result.len
        result.addSym(s)
    else:
      illFormedAst(n, c.config)