about summary refs log tree commit diff stats
path: root/lib
diff options
context:
space:
mode:
Diffstat (limited to 'lib')
-rw-r--r--lib/endians2.nim186
1 files changed, 0 insertions, 186 deletions
diff --git a/lib/endians2.nim b/lib/endians2.nim
deleted file mode 100644
index c9a39144..00000000
--- a/lib/endians2.nim
+++ /dev/null
@@ -1,186 +0,0 @@
-# Copyright (c) 2018-2019 Status Research & Development GmbH
-# Licensed and distributed under either of
-#   * MIT license (license terms in the root directory or at http://opensource.org/licenses/MIT).
-#   * Apache v2 license (license terms in the root directory or at http://www.apache.org/licenses/LICENSE-2.0).
-# at your option. This file may not be copied, modified, or distributed except according to those terms.
-
-# Endian conversion operations for unsigned integers, suitable for serializing
-# and deserializing data. The operations are only defined for unsigned
-# integers - if you wish to encode signed integers, convert / cast them to
-# unsigned first!
-#
-# Although it would be possible to enforce correctness with endians in the type
-# (`BigEndian[uin64]`) this seems like overkill. That said, some
-# static analysis tools allow you to annotate fields with endianness - perhaps
-# an idea for the future, akin to `TaintedString`?
-#
-# Keeping the above in mind, it's generally safer to use `array[N, byte]` to
-# hold values of specific endianness and read them out with `fromBytes` when the
-# integer interpretation of the bytes is needed.
-
-{.push raises: [].}
-
-type
-  SomeEndianInt* = uint8|uint16|uint32|uint64
-    ## types that we support endian conversions for - uint8 is there for
-    ## for syntactic / generic convenience. Other candidates:
-    ## * int/uint - uncertain size, thus less suitable for binary interop
-    ## * intX - over and underflow protection in nim might easily cause issues -
-    ##          need to consider before adding here
-
-const
-  useBuiltins = not defined(noIntrinsicsEndians)
-
-when (defined(gcc) or defined(llvm_gcc) or defined(clang)) and useBuiltins:
-  func swapBytesBuiltin(x: uint8): uint8 = x
-  func swapBytesBuiltin(x: uint16): uint16 {.
-      importc: "__builtin_bswap16", nodecl.}
-
-  func swapBytesBuiltin(x: uint32): uint32 {.
-      importc: "__builtin_bswap32", nodecl.}
-
-  func swapBytesBuiltin(x: uint64): uint64 {.
-      importc: "__builtin_bswap64", nodecl.}
-
-elif defined(icc) and useBuiltins:
-  func swapBytesBuiltin(x: uint8): uint8 = x
-  func swapBytesBuiltin(a: uint16): uint16 {.importc: "_bswap16", nodecl.}
-  func swapBytesBuiltin(a: uint32): uint32 {.importc: "_bswap", nodec.}
-  func swapBytesBuiltin(a: uint64): uint64 {.importc: "_bswap64", nodecl.}
-
-elif defined(vcc) and useBuiltins:
-  func swapBytesBuiltin(x: uint8): uint8 = x
-  func swapBytesBuiltin(a: uint16): uint16 {.
-      importc: "_byteswap_ushort", cdecl, header: "<intrin.h>".}
-
-  func swapBytesBuiltin(a: uint32): uint32 {.
-      importc: "_byteswap_ulong", cdecl, header: "<intrin.h>".}
-
-  func swapBytesBuiltin(a: uint64): uint64 {.
-      importc: "_byteswap_uint64", cdecl, header: "<intrin.h>".}
-
-func swapBytesNim(x: uint8): uint8 = x
-func swapBytesNim(x: uint16): uint16 = (x shl 8) or (x shr 8)
-
-func swapBytesNim(x: uint32): uint32 =
-  let v = (x shl 16) or (x shr 16)
-
-  ((v shl 8) and 0xff00ff00'u32) or ((v shr 8) and 0x00ff00ff'u32)
-
-func swapBytesNim(x: uint64): uint64 =
-  var v = (x shl 32) or (x shr 32)
-  v =
-    ((v and 0x0000ffff0000ffff'u64) shl 16) or
-    ((v and 0xffff0000ffff0000'u64) shr 16)
-
-  ((v and 0x00ff00ff00ff00ff'u64) shl 8) or
-    ((v and 0xff00ff00ff00ff00'u64) shr 8)
-
-func swapBytes*[T: SomeEndianInt](x: T): T {.inline.} =
-  ## Reverse the bytes within an integer, such that the most significant byte
-  ## changes place with the least significant one, etc
-  ##
-  ## Example:
-  ## doAssert swapBytes(0x01234567'u32) == 0x67452301
-  when nimvm:
-    swapBytesNim(x)
-  else:
-    when declared(swapBytesBuiltin):
-      swapBytesBuiltin(x)
-    else:
-      swapBytesNim(x)
-
-func toBytes*(x: SomeEndianInt, endian: Endianness = system.cpuEndian):
-    array[sizeof(x), byte] {.noinit, inline.} =
-  ## Convert integer to its corresponding byte sequence using the chosen
-  ## endianness. By default, native endianness is used which is not portable!
-  let v =
-    if endian == system.cpuEndian: x
-    else: swapBytes(x)
-
-  when nimvm: # No copyMem in vm
-    for i in 0..<sizeof(result):
-      result[i] = byte((v shr (i * 8)) and 0xff)
-  else:
-    copyMem(addr result, unsafeAddr v, sizeof(result))
-
-func toBytesLE*(x: SomeEndianInt):
-    array[sizeof(x), byte] {.inline.} =
-  ## Convert a native endian integer to a little endian byte sequence
-  toBytes(x, littleEndian)
-
-func toBytesBE*(x: SomeEndianInt):
-    array[sizeof(x), byte] {.inline.} =
-  ## Convert a native endian integer to a native endian byte sequence
-  toBytes(x, bigEndian)
-
-func fromBytes*(
-    T: typedesc[SomeEndianInt],
-    x: openArray[byte],
-    endian: Endianness = system.cpuEndian): T {.inline.} =
-  ## Read bytes and convert to an integer according to the given endianness.
-  ##
-  ## Note: The default value of `system.cpuEndian` is not portable across
-  ## machines.
-  ##
-  ## Panics when `x.len < sizeof(T)` - for shorter buffers, copy the data to
-  ## an `array` first using `arrayops.initCopyFrom`, taking care to zero-fill
-  ## at the right end - usually the beginning for big endian and the end for
-  ## little endian, but this depends on the serialization of the bytes.
-
-  # This check gets optimized away when the compiler can prove that the length
-  # is large enough - passing in an `array` or using a construct like
-  # ` toOpenArray(pos, pos + sizeof(T) - 1)` are two ways that this happens
-  doAssert x.len >= sizeof(T), "Not enough bytes for endian conversion"
-
-  when nimvm: # No copyMem in vm
-    for i in 0..<sizeof(result):
-      result = result or (T(x[i]) shl (i * 8))
-  else:
-    # `copyMem` helps compilers optimize the copy into a single instruction, when
-    # alignment etc permits
-    copyMem(addr result, unsafeAddr x[0], sizeof(result))
-
-  if endian != system.cpuEndian:
-    # The swap is turned into a CPU-specific instruction and/or combined with
-    # the copy above, again when conditions permit it - for example, on X86
-    # fromBytesBE gets compiled into a single `MOVBE` instruction
-    result = swapBytes(result)
-
-func fromBytesBE*(
-    T: typedesc[SomeEndianInt],
-    x: openArray[byte]): T {.inline.} =
-  ## Read big endian bytes and convert to an integer. At runtime, v must contain
-  ## at least sizeof(T) bytes. By default, native endianness is used which is
-  ## not portable!
-  fromBytes(T, x, bigEndian)
-
-func toBE*[T: SomeEndianInt](x: T): T {.inline.} =
-  ## Convert a native endian value to big endian. Consider toBytesBE instead
-  ## which may prevent some confusion.
-  if cpuEndian == bigEndian: x
-  else: x.swapBytes
-
-func fromBE*[T: SomeEndianInt](x: T): T {.inline.} =
-  ## Read a big endian value and return the corresponding native endian
-  # there's no difference between this and toBE, except when reading the code
-  toBE(x)
-
-func fromBytesLE*(
-    T: typedesc[SomeEndianInt],
-    x: openArray[byte]): T {.inline.} =
-  ## Read little endian bytes and convert to an integer. At runtime, v must
-  ## contain at least sizeof(T) bytes. By default, native endianness is used
-  ## which is not portable!
-  fromBytes(T, x, littleEndian)
-
-func toLE*[T: SomeEndianInt](x: T): T {.inline.} =
-  ## Convert a native endian value to little endian. Consider toBytesLE instead
-  ## which may prevent some confusion.
-  if cpuEndian == littleEndian: x
-  else: x.swapBytes
-
-func fromLE*[T: SomeEndianInt](x: T): T {.inline.} =
-  ## Read a little endian value and return the corresponding native endian
-  # there's no difference between this and toLE, except when reading the code
-  toLE(x)