1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
|
import algorithm
import deques
import math
import types/line
import types/vector
type
Path* = ref object
subpaths: seq[Subpath]
needsNewSubpath: bool
tempClosed: bool
PathLines* = object
lines*: seq[LineSegment]
miny*: float64
maxy*: float64
PathSegmentType = enum
SEGMENT_STRAIGHT, SEGMENT_QUADRATIC, SEGMENT_BEZIER, SEGMENT_ARC,
SEGMENT_ELLIPSE
PathSegment = object
case t: PathSegmentType
of SEGMENT_QUADRATIC:
cp: Vector2D
of SEGMENT_BEZIER:
cp0: Vector2D
cp1: Vector2D
of SEGMENT_ARC:
oa: Vector2D
r: float64
ia: bool
of SEGMENT_ELLIPSE:
oe: Vector2D
rx: float64
ry: float64
else: discard
Subpath* = object
points: seq[Vector2D]
segments: seq[PathSegment]
closed: bool
proc newPath*(): Path =
return Path(
needsNewSubpath: true
)
proc addSubpathAt(path: Path, p: Vector2D) =
path.subpaths.add(Subpath(points: @[p]))
proc addSegment(path: Path, segment: PathSegment, p: Vector2D) =
path.subpaths[^1].segments.add(segment)
path.subpaths[^1].points.add(p)
proc addStraightSegment(path: Path, p: Vector2D) =
let segment = PathSegment(t: SEGMENT_STRAIGHT)
path.addSegment(segment, p)
proc addQuadraticSegment(path: Path, cp, p: Vector2D) =
let segment = PathSegment(
t: SEGMENT_QUADRATIC,
cp: cp
)
path.addSegment(segment, p)
proc addBezierSegment(path: Path, cp0, cp1, p: Vector2D) =
let segment = PathSegment(
t: SEGMENT_BEZIER,
cp0: cp0,
cp1: cp1
)
path.addSegment(segment, p)
# Goes from start tangent point to end tangent point
proc addArcSegment(path: Path, o, etan: Vector2D, r: float64, ia: bool) =
let segment = PathSegment(
t: SEGMENT_ARC,
oa: o,
r: r,
ia: ia
)
path.addSegment(segment, etan)
proc addEllipseSegment(path: Path, o, etan: Vector2D, rx, ry: float64) =
#TODO simplify to bezier?
let segment = PathSegment(
t: SEGMENT_ELLIPSE,
oe: o,
rx: rx,
ry: ry
)
path.addSegment(segment, etan)
# https://hcklbrrfnn.files.wordpress.com/2012/08/bez.pdf
func flatEnough(a, b, c: Vector2D): bool =
let ux = 3 * c.x - 2 * a.x - b.x
let uy = 3 * c.y - 2 * a.y - b.y
let vx = 3 * c.x - 2 * b.x - b.x
let vy = 3 * c.y - 2 * b.y - b.y
return max(ux * ux, vx * vx) + max(uy * uy, vy * vy) <= 0.02
func flatEnough(a, b, c0, c1: Vector2D): bool =
let ux = 3 * c0.x - 2 * a.x - b.x
let uy = 3 * c0.y - 2 * a.y - b.y
let vx = 3 * c1.x - a.x - 2 * b.x
let vy = 3 * c1.y - a.y - 2 * b.y
return max(ux * ux, vx * vx) + max(uy * uy, vy * vy) <= 0.02
iterator items*(pl: PathLines): LineSegment {.inline.} =
for line in pl.lines:
yield line
func `[]`*(pl: PathLines, i: int): LineSegment = pl.lines[i]
func `[]`*(pl: PathLines, i: BackwardsIndex): LineSegment = pl.lines[i]
func `[]`*(pl: PathLines, s: Slice[int]): seq[LineSegment] = pl.lines[s]
func len*(pl: PathLines): int = pl.lines.len
iterator quadraticLines(a, b, c: Vector2D): Line {.inline.} =
var points: Deque[tuple[a, b, c: Vector2D]]
let tup = (a, b, c)
points.addFirst(tup)
while points.len > 2:
let (a, b, c) = points.popFirst()
if flatEnough(a, b, c):
yield Line(p0: a, p1: b)
else:
let mid1 = (c + a) / 2
let mid2 = (c + b) / 2
let s = (mid1 + mid2) / 2
points.addFirst((a, s, mid1))
points.addFirst((s, b, mid2))
iterator bezierLines(p0, p1, c0, c1: Vector2D): Line {.inline.} =
var points: Deque[tuple[p0, p1, c0, c1: Vector2D]]
let tup = (p0, p1, c0, c1)
points.addLast(tup)
while points.len > 0:
let (p0, p1, c0, c1) = points.popFirst()
if flatEnough(p0, p1, c0, c1):
yield Line(p0: p0, p1: p1)
else:
let mida1 = (p0 + c0) / 2
let mida2 = (c0 + c1) / 2
let mida3 = (c1 + p1) / 2
let midb1 = (mida1 + mida2) / 2
let midb2 = (mida2 + mida3) / 2
let midc = (midb1 + midb2) / 2
points.addLast((p0, midc, mida1, midb1))
points.addLast((midc, p1, midb2, mida3))
# https://stackoverflow.com/a/44829356
func arcControlPoints(p1, p4, o: Vector2D): tuple[c0, c1: Vector2D] =
let a = p1 - o
let b = p4 - o
let q1 = a.x * a.x + a.y * a.y
let q2 = q1 + a.x * b.x + a.y * b.y
let k2 = (4 / 3) * (sqrt(2 * q1 * q2) - q2) / a.cross(b)
let c0 = o + a + Vector2D(x: -k2 * a.y, y: k2 * a.x)
let c1 = o + b + Vector2D(x: k2 * b.y, y: -k2 * b.x)
return (c0, c1)
iterator arcLines(p0, p1, o: Vector2D, r: float64, i: bool): Line {.inline.} =
var p0 = p0
let pp0 = p0 - o
let pp1 = p1 - o
var theta = pp0.innerAngle(pp1)
if not i:
theta = PI * 2 - theta
while theta > 0:
let step = if theta > PI / 2: PI / 2 else: theta
var p1 = p0 - o
p1 = p1.rotate(step)
p1 += o
let (c0, c1) = arcControlPoints(p0, p1, o)
for line in bezierLines(p0, p1, c0, c1):
yield line
p0 = p1
theta -= step
# From SerenityOS
iterator ellipseLines(p0, p1, o: Vector2D, rx, ry, theta_1, rotx,
theta_delta: float64): Line {.inline.} =
if rx > 0 and ry > 0:
var s = p0
var e = p1
var theta_1 = theta_1
var theta_delta = theta_delta
if theta_delta < 0:
swap(s, e)
theta_1 += theta_delta
theta_delta = abs(theta_delta)
# The segments are at most 1 long
let step = arctan2(1f64, max(rx, ry))
var current_point = s - o
var next_point = Vector2D()
var theta = theta_1
while theta <= theta_1 + theta_delta:
next_point.x = rx * cos(theta)
next_point.y = ry * sin(theta)
next_point = next_point.rotate(rotx)
yield Line(p0: current_point + o, p1: next_point + o)
current_point = next_point
theta += step
yield Line(p0: current_point + o, p1: e)
iterator lines(subpath: Subpath, i: int): Line {.inline.} =
let p0 = subpath.points[i]
let p1 = subpath.points[i + 1]
case subpath.segments[i].t
of SEGMENT_STRAIGHT:
yield Line(p0: p0, p1: p1)
of SEGMENT_QUADRATIC:
let c = subpath.segments[i].cp
for line in quadraticLines(p0, p1, c):
yield line
of SEGMENT_BEZIER:
let c0 = subpath.segments[i].cp0
let c1 = subpath.segments[i].cp1
for line in bezierLines(p0, p1, c0, c1):
yield line
of SEGMENT_ARC:
let o = subpath.segments[i].oa
let r = subpath.segments[i].r
let i = subpath.segments[i].ia
for line in arcLines(p0, p1, o, r, i):
yield line
of SEGMENT_ELLIPSE:
discard #TODO
iterator lines*(path: Path): Line {.inline.} =
for subpath in path.subpaths:
assert subpath.points.len == subpath.segments.len + 1
for i in 0 ..< subpath.segments.len:
for line in subpath.lines(i):
if line.p0 == line.p1:
continue
yield line
proc getLineSegments*(path: Path): PathLines =
if path.subpaths.len == 0:
return
var miny = Inf
var maxy = -Inf
var segments: seq[LineSegment]
for line in path.lines:
let ls = LineSegment(line)
miny = min(miny, ls.miny)
maxy = max(maxy, ls.maxy)
segments.add(ls)
segments.sort(cmpLineSegmentY)
return PathLines(
miny: miny,
maxy: maxy,
lines: segments
)
proc moveTo(path: Path, v: Vector2D) =
path.addSubpathAt(v)
path.needsNewSubpath = false #TODO TODO TODO ???? why here
proc beginPath*(path: Path) =
path.subpaths.setLen(0)
proc moveTo*(path: Path, x, y: float64) =
for v in [x, y]:
if classify(v) in {fcInf, fcNegInf, fcNan}:
return
path.moveTo(Vector2D(x: x, y: y))
proc ensureSubpath(path: Path, x, y: float64) =
if path.needsNewSubpath:
path.moveTo(x, y)
path.needsNewSubpath = false
proc closePath*(path: Path) =
let lsp = path.subpaths[^1]
if path.subpaths.len > 0 and (lsp.points.len > 0 or lsp.closed):
path.subpaths[^1].closed = true
path.addSubpathAt(path.subpaths[^1].points[0])
#TODO this is a hack, and breaks as soon as any draw command is issued
# between tempClosePath and tempOpenPath
proc tempClosePath*(path: Path) =
if path.subpaths.len > 0 and not path.subpaths[^1].closed:
path.subpaths[^1].closed = true
let lsp = path.subpaths[^1]
path.addSubpathAt(lsp.points[^1])
path.addStraightSegment(lsp.points[0])
path.tempClosed = true
proc tempOpenPath*(path: Path) =
if path.tempClosed:
path.subpaths.setLen(path.subpaths.len - 1)
path.subpaths[^1].closed = false
path.tempClosed = false
proc lineTo*(path: Path, x, y: float64) =
for v in [x, y]:
if classify(v) in {fcInf, fcNegInf, fcNan}:
return
if path.subpaths.len == 0:
path.ensureSubpath(x, y)
else:
path.addStraightSegment(Vector2D(x: x, y: y))
proc quadraticCurveTo*(path: Path, cpx, cpy, x, y: float64) =
for v in [cpx, cpy, x, y]:
if classify(v) in {fcInf, fcNegInf, fcNan}:
return
path.ensureSubpath(cpx, cpy)
let cp = Vector2D(x: cpx, y: cpy)
let p = Vector2D(x: x, y: y)
path.addQuadraticSegment(cp, p)
proc bezierCurveTo*(path: Path, cp0x, cp0y, cp1x, cp1y, x, y: float64) =
for v in [cp0x, cp0y, cp1x, cp1y, x, y]:
if classify(v) in {fcInf, fcNegInf, fcNan}:
return
path.ensureSubpath(cp0x, cp0y)
let cp0 = Vector2D(x: cp0x, y: cp0y)
let cp1 = Vector2D(x: cp1x, y: cp1y)
let p = Vector2D(x: x, y: y)
path.addBezierSegment(cp0, cp1, p)
proc arcTo*(path: Path, x1, y1, x2, y2, radius: float64): bool =
for v in [x1, y1, x2, y2, radius]:
if classify(v) in {fcInf, fcNegInf, fcNan}:
return
if radius < 0:
return false
path.ensureSubpath(x1, y1)
#TODO this should be transformed by the inverse of the transformation matrix
let v0 = path.subpaths[^1].points[^1]
let v1 = Vector2D(x: x1, y: y1)
let v2 = Vector2D(x: x2, y: y2)
if v0.x == x1 and v0.y == y1 or x1 == x2 and y1 == y2 or radius == 0:
path.addStraightSegment(v1)
elif collinear(v0, v1, v2):
path.addStraightSegment(v1)
else:
let pv0 = v0 - v1
let pv2 = v2 - v1
let tv0 = v1 + pv0 * radius * 2 / pv0.norm()
let tv2 = v1 + pv2 * radius * 2 / pv2.norm()
let q = -(pv0.x * tv0.x + pv0.y * tv0.y)
let p = -(pv2.x * tv2.x + pv2.y * tv2.y)
let cr = pv0.cross(pv2)
let origin = Vector2D(
x: (pv0.y * p - pv2.y * q) / cr,
y: (pv2.x * q - pv0.x * p) / cr
)
path.addStraightSegment(tv0)
path.addArcSegment(origin, tv2, radius, true) #TODO always inner?
return true
func resolveEllipsePoint(o: Vector2D, angle, radiusX, radiusY,
rotation: float64): Vector2D =
# Stolen from SerenityOS
let tanrel = tan(angle)
let tan2 = tanrel * tanrel
let ab = radiusX * radiusY
let a2 = radiusX * radiusX
let b2 = radiusY * radiusY
let sq = sqrt(b2 + a2 * tan2)
let sn = if cos(angle) >= 0: 1f64 else: -1f64
let relx = ab / sq * sn
let rely = ab * tanrel / sq * sn
return Vector2D(x: relx, y: rely).rotate(rotation) + o
proc arc*(path: Path, x, y, radius, startAngle, endAngle: float64,
counterclockwise: bool): bool =
for v in [x, y, radius, startAngle, endAngle]:
if classify(v) in {fcInf, fcNegInf, fcNan}:
return
if radius < 0:
return false
let o = Vector2D(x: x, y: y)
var s = resolveEllipsePoint(o, startAngle, radius, radius, 0)
var e = resolveEllipsePoint(o, endAngle, radius, radius, 0)
if counterclockwise:
let tmp = s
e = s
s = tmp
if path.subpaths.len > 0:
path.addStraightSegment(s)
else:
path.moveTo(s)
path.addArcSegment(o, e, radius, abs(startAngle - endAngle) < PI)
return true
proc ellipse*(path: Path, x, y, radiusX, radiusY, rotation, startAngle,
endAngle: float64, counterclockwise: bool): bool =
for v in [x, y, radiusX, radiusY, rotation, startAngle, endAngle]:
if classify(v) in {fcInf, fcNegInf, fcNan}:
return
if radiusX < 0 or radiusY < 0:
return false
let o = Vector2D(x: x, y: y)
var s = resolveEllipsePoint(o, startAngle, radiusX, radiusY, rotation)
var e = resolveEllipsePoint(o, endAngle, radiusX, radiusY, rotation)
if counterclockwise:
let tmp = s
e = s
s = tmp
if path.subpaths.len > 0:
path.addStraightSegment(s)
else:
path.moveTo(s)
path.addEllipseSegment(o, e, radiusX, radiusY)
return true
proc rect*(path: Path, x, y, w, h: float64) =
for v in [x, y, w, h]:
if classify(v) in {fcInf, fcNegInf, fcNan}:
return
path.addSubpathAt(Vector2D(x: x, y: y))
path.addStraightSegment(Vector2D(x: x + w, y: y))
path.addStraightSegment(Vector2D(x: x + w, y: y + h))
path.addStraightSegment(Vector2D(x: x, y: y + h))
path.addStraightSegment(Vector2D(x: x, y: y))
path.addSubpathAt(Vector2D(x: x, y: y))
proc roundRect*(path: Path, x, y, w, h, radii: float64) =
for v in [x, y, w, h]:
if classify(v) in {fcInf, fcNegInf, fcNan}:
return
#TODO implement
path.rect(x, y, w, h) # :P
|