#
#
# The Nimrod Compiler
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# included from cgen.nim
# ------------------------- Name Mangling --------------------------------
proc mangle(name: string): string =
case name[0]
of 'a'..'z':
result = ""
add(result, chr(ord(name[0]) - ord('a') + ord('A')))
of '0'..'9', 'A'..'Z':
result = ""
add(result, name[0])
else: result = "HEX" & toHex(ord(name[0]), 2)
for i in countup(0 + 1, len(name) + 0 - 1):
case name[i]
of 'A'..'Z':
add(result, chr(ord(name[i]) - ord('A') + ord('a')))
of '_':
nil
of 'a'..'z', '0'..'9':
add(result, name[i])
else:
add(result, "HEX")
add(result, toHex(ord(name[i]), 2))
proc isKeyword(w: PIdent): bool =
# nimrod and C++ share some keywords
# it's more efficient to test the whole nimrod keywords range
case w.id
of ccgKeywordsLow..ccgKeywordsHigh,
nimKeywordsLow..nimKeywordsHigh,
ord(wInline): return true
else: return false
proc mangleName(s: PSym): PRope =
result = s.loc.r
if result == nil:
if gCmd == cmdCompileToLLVM:
case s.kind
of skProc, skMethod, skConverter, skConst:
result = toRope("@")
of skVar, skForVar, skResult, skLet:
if sfGlobal in s.flags: result = toRope("@")
else: result = toRope("%")
of skTemp, skParam, skType, skEnumField, skModule:
result = toRope("%")
else: InternalError(s.info, "mangleName")
when oKeepVariableNames:
let keepOrigName = s.kind in skLocalVars - {skForVar} and
{sfFromGeneric, sfGlobal, sfShadowed} * s.flags == {} and
not isKeyword(s.name)
# XXX: This is still very experimental
#
# Even with all these inefficient checks, the bootstrap
# time is actually improved. This is probably because so many
# rope concatenations and are now eliminated.
#
# Future notes:
# sfFromGeneric seems to be needed in order to avoid multiple
# definitions of certain varialbes generated in transf with
# names such as:
# `r`, `res`
# I need to study where these come from.
#
# about sfShadowed:
# consider the following nimrod code:
# var x = 10
# block:
# var x = something(x)
# The generated C code will be:
# NI x;
# x = 10;
# {
# NI x;
# x = something(x); // Oops, x is already shadowed here
# }
# Right now, we work-around by not keeping the original name
# of the shadowed variable, but we can do better - we can
# create an alternative reference to it in the outer scope and
# use that in the inner scope.
#
# about isCKeyword:
# nimrod variable names can be C keywords.
# We need to avoid such names in the generated code.
# XXX: Study whether mangleName is called just once per variable.
# Otherwise, there might be better place to do this.
#
# about sfGlobal:
# This seems to be harder - a top level extern variable from
# another modules can have the same name as a local one.
# Maybe we should just implement sfShadowed for them too.
#
# about skForVar:
# These are not properly scoped now - we need to add blocks
# around for loops in transf
if keepOrigName:
result = s.name.s.toRope
else:
app(result, toRope(mangle(s.name.s)))
app(result, "_")
app(result, toRope(s.id))
else:
app(result, toRope(mangle(s.name.s)))
app(result, "_")
app(result, toRope(s.id))
s.loc.r = result
proc isCompileTimeOnly(t: PType): bool =
result = t.kind in {tyTypedesc, tyExpr}
var anonTypeName = toRope"TY"
proc typeName(typ: PType): PRope =
result = if typ.sym != nil: typ.sym.name.s.toRope
else: anonTypeName
proc getTypeName(typ: PType): PRope =
if (typ.sym != nil) and ({sfImportc, sfExportc} * typ.sym.flags != {}) and
(gCmd != cmdCompileToLLVM):
result = typ.sym.loc.r
else:
if typ.loc.r == nil:
typ.loc.r = if gCmd != cmdCompileToLLVM: con(typ.typeName, typ.id.toRope)
else: con("%".toRope, typ.typeName, typ.id.toRope)
result = typ.loc.r
if result == nil: InternalError("getTypeName: " & $typ.kind)
proc mapSetType(typ: PType): TCTypeKind =
case int(getSize(typ))
of 1: result = ctInt8
of 2: result = ctInt16
of 4: result = ctInt32
of 8: result = ctInt64
else: result = ctArray
proc mapType(typ: PType): TCTypeKind =
case typ.kind
of tyNone, tyStmt: result = ctVoid
of tyBool: result = ctBool
of tyChar: result = ctChar
of tySet: result = mapSetType(typ)
of tyOpenArray, tyArrayConstr, tyArray: result = ctArray
of tyObject, tyTuple: result = ctStruct
of tyGenericBody, tyGenericInst, tyGenericParam, tyDistinct, tyOrdinal,
tyConst, tyMutable, tyIter:
result = mapType(lastSon(typ))
of tyEnum:
if firstOrd(typ) < 0:
result = ctInt32
else:
case int(getSize(typ))
of 1: result = ctUInt8
of 2: result = ctUInt16
of 4: result = ctInt32
of 8: result = ctInt64
else: internalError("mapType")
of tyRange: result = mapType(typ.sons[0])
of tyPtr, tyVar, tyRef:
var base = skipTypes(typ.sons[0], abstractInst)
case base.kind
of tyOpenArray, tyArrayConstr, tyArray: result = ctArray
else: result = ctPtr
of tyPointer: result = ctPtr
of tySequence: result = ctNimSeq
of tyProc: result = if typ.callConv != ccClosure: ctProc else: ctStruct
of tyString: result = ctNimStr
of tyCString: result = ctCString
of tyInt..tyUInt64:
result = TCTypeKind(ord(typ.kind) - ord(tyInt) + ord(ctInt))
else: InternalError("mapType")
proc mapReturnType(typ: PType): TCTypeKind =
if skipTypes(typ, abstractInst).kind == tyArray: result = ctPtr
else: result = mapType(typ)
proc getTypeDescAux(m: BModule, typ: PType, check: var TIntSet): PRope
proc needsComplexAssignment(typ: PType): bool =
result = containsGarbageCollectedRef(typ)
proc isInvalidReturnType(rettype: PType): bool =
# Arrays and sets cannot be returned by a C procedure, because C is
# such a poor programming language.
# We exclude records with refs too. This enhances efficiency and
# is necessary for proper code generation of assignments.
if rettype == nil: result = true
else:
case mapType(rettype)
of ctArray:
result = not (skipTypes(rettype, abstractInst).kind in
{tyVar, tyRef, tyPtr})
of ctStruct:
result = needsComplexAssignment(skipTypes(rettype, abstractInst))
else: result = false
const
CallingConvToStr: array[TCallingConvention, string] = ["N_NIMCALL",
"N_STDCALL", "N_CDECL", "N_SAFECALL",
"N_SYSCALL", # this is probably not correct for all platforms,
# but one can #define it to what one wants
"N_INLINE", "N_NOINLINE", "N_FASTCALL", "N_CLOSURE", "N_NOCONV"]
CallingConvToStrLLVM: array[TCallingConvention, string] = ["fastcc $1",
"stdcall $1", "ccc $1", "safecall $1", "syscall $1", "$1 alwaysinline",
"$1 noinline", "fastcc $1", "ccc $1", "$1"]
proc CacheGetType(tab: TIdTable, key: PType): PRope =
# returns nil if we need to declare this type
# since types are now unique via the ``GetUniqueType`` mechanism, this slow
# linear search is not necessary anymore:
result = PRope(IdTableGet(tab, key))
proc getTempName(): PRope =
result = ropeff("TMP$1", "%TMP$1", [toRope(backendId())])
proc getGlobalTempName(): PRope =
result = ropeff("TMP$1", "@TMP$1", [toRope(backendId())])
proc ccgIntroducedPtr(s: PSym): bool =
var pt = skipTypes(s.typ, abstractInst)
assert skResult != s.kind
case pt.Kind
of tyObject:
if (optByRef in s.options) or (getSize(pt) > platform.floatSize * 2):
result = true # requested anyway
elif (tfFinal in pt.flags) and (pt.sons[0] == nil):
result = false # no need, because no subtyping possible
else:
result = true # ordinary objects are always passed by reference,
# otherwise casting doesn't work
of tyTuple:
result = (getSize(pt) > platform.floatSize*2) or (optByRef in s.options)
else: result = false
proc fillResult(param: PSym) =
fillLoc(param.loc, locParam, param.typ, ropeff("Result", "%Result", []),
OnStack)
if (mapReturnType(param.typ) != ctArray) and IsInvalidReturnType(param.typ):
incl(param.loc.flags, lfIndirect)
param.loc.s = OnUnknown
proc getParamTypeDesc(m: BModule, t: PType, check: var TIntSet): PRope =
when false:
if t.Kind in {tyRef, tyPtr, tyVar}:
var b = skipTypes(t.sons[0], abstractInst)
if b.kind == tySet and mapSetType(b) == ctArray:
return getTypeDescAux(m, b, check)
result = getTypeDescAux(m, t, check)
proc genProcParams(m: BModule, t: PType, rettype, params: var PRope,
check: var TIntSet, declareEnvironment=true) =
params = nil
if (t.sons[0] == nil) or isInvalidReturnType(t.sons[0]):
rettype = toRope("void")
else:
rettype = getTypeDescAux(m, t.sons[0], check)
for i in countup(1, sonsLen(t.n) - 1):
if t.n.sons[i].kind != nkSym: InternalError(t.n.info, "genProcParams")
var param = t.n.sons[i].sym
if isCompileTimeOnly(param.typ): continue
fillLoc(param.loc, locParam, param.typ, mangleName(param), OnStack)
app(params, getParamTypeDesc(m, param.typ, check))
if ccgIntroducedPtr(param):
app(params, "*")
incl(param.loc.flags, lfIndirect)
param.loc.s = OnUnknown
app(params, " ")
app(params, param.loc.r)
# declare the len field for open arrays:
var arr = param.typ
if arr.kind == tyVar: arr = arr.sons[0]
var j = 0
while arr.Kind == tyOpenArray:
# this fixes the 'sort' bug:
if param.typ.kind == tyVar: param.loc.s = OnUnknown
# need to pass hidden parameter:
appff(params, ", NI $1Len$2", ", @NI $1Len$2", [param.loc.r, j.toRope])
inc(j)
arr = arr.sons[0]
if i < sonsLen(t.n) - 1: app(params, ", ")
if (t.sons[0] != nil) and isInvalidReturnType(t.sons[0]):
var arr = t.sons[0]
if params != nil: app(params, ", ")
app(params, getTypeDescAux(m, arr, check))
if (mapReturnType(t.sons[0]) != ctArray) or (gCmd == cmdCompileToLLVM):
app(params, "*")
appff(params, " Result", " @Result", [])
if t.callConv == ccClosure and declareEnvironment:
if params != nil: app(params, ", ")
app(params, "void* ClEnv")
if tfVarargs in t.flags:
if params != nil: app(params, ", ")
app(params, "...")
if params == nil and gCmd != cmdCompileToLLVM: app(params, "void)")
else: app(params, ")")
params = con("(", params)
proc isImportedType(t: PType): bool =
result = (t.sym != nil) and (sfImportc in t.sym.flags)
proc typeNameOrLiteral(t: PType, literal: string): PRope =
if (t.sym != nil) and (sfImportc in t.sym.flags) and (t.sym.magic == mNone):
result = getTypeName(t)
else:
result = toRope(literal)
proc getSimpleTypeDesc(m: BModule, typ: PType): PRope =
const
NumericalTypeToStr: array[tyInt..tyUInt64, string] = [
"NI", "NI8", "NI16", "NI32", "NI64",
"NF", "NF32", "NF64", "NF128",
"NU", "NU8", "NU16", "NU32", "NU64",]
case typ.Kind
of tyPointer:
result = typeNameOrLiteral(typ, "void*")
of tyEnum:
if firstOrd(typ) < 0:
result = typeNameOrLiteral(typ, "NI32")
else:
case int(getSize(typ))
of 1: result = typeNameOrLiteral(typ, "NU8")
of 2: result = typeNameOrLiteral(typ, "NU16")
of 4: result = typeNameOrLiteral(typ, "NI32")
of 8: result = typeNameOrLiteral(typ, "NI64")
else:
internalError(typ.sym.info, "getSimpleTypeDesc: " & $(getSize(typ)))
result = nil
of tyString:
discard cgsym(m, "NimStringDesc")
result = typeNameOrLiteral(typ, "NimStringDesc*")
of tyCstring: result = typeNameOrLiteral(typ, "NCSTRING")
of tyBool: result = typeNameOrLiteral(typ, "NIM_BOOL")
of tyChar: result = typeNameOrLiteral(typ, "NIM_CHAR")
of tyNil: result = typeNameOrLiteral(typ, "0")
of tyInt..tyUInt64:
result = typeNameOrLiteral(typ, NumericalTypeToStr[typ.Kind])
of tyRange: result = getSimpleTypeDesc(m, typ.sons[0])
else: result = nil
proc getTypePre(m: BModule, typ: PType): PRope =
if typ == nil: result = toRope("void")
else:
result = getSimpleTypeDesc(m, typ)
if result == nil: result = CacheGetType(m.typeCache, typ)
proc getForwardStructFormat(): string =
if gCmd == cmdCompileToCpp: result = "struct $1;$n"
else: result = "typedef struct $1 $1;$n"
proc getTypeForward(m: BModule, typ: PType): PRope =
result = CacheGetType(m.forwTypeCache, typ)
if result != nil: return
result = getTypePre(m, typ)
if result != nil: return
case typ.kind
of tySequence, tyTuple, tyObject:
result = getTypeName(typ)
if not isImportedType(typ):
appf(m.s[cfsForwardTypes], getForwardStructFormat(), [result])
IdTablePut(m.forwTypeCache, typ, result)
else: InternalError("getTypeForward(" & $typ.kind & ')')
proc mangleRecFieldName(field: PSym, rectype: PType): PRope =
if (rectype.sym != nil) and
({sfImportc, sfExportc} * rectype.sym.flags != {}):
result = field.loc.r
else:
result = toRope(mangle(field.name.s))
if result == nil: InternalError(field.info, "mangleRecFieldName")
proc genRecordFieldsAux(m: BModule, n: PNode,
accessExpr: PRope, rectype: PType,
check: var TIntSet): PRope =
var
ae, uname, sname, a: PRope
k: PNode
field: PSym
result = nil
case n.kind
of nkRecList:
for i in countup(0, sonsLen(n) - 1):
app(result, genRecordFieldsAux(m, n.sons[i], accessExpr, rectype, check))
of nkRecCase:
if (n.sons[0].kind != nkSym): InternalError(n.info, "genRecordFieldsAux")
app(result, genRecordFieldsAux(m, n.sons[0], accessExpr, rectype, check))
uname = toRope(mangle(n.sons[0].sym.name.s) & 'U')
if accessExpr != nil: ae = ropef("$1.$2", [accessExpr, uname])
else: ae = uname
app(result, "union {" & tnl)
for i in countup(1, sonsLen(n) - 1):
case n.sons[i].kind
of nkOfBranch, nkElse:
k = lastSon(n.sons[i])
if k.kind != nkSym:
sname = con("S", toRope(i))
a = genRecordFieldsAux(m, k, ropef("$1.$2", [ae, sname]), rectype,
check)
if a != nil:
app(result, "struct {")
app(result, a)
appf(result, "} $1;$n", [sname])
else:
app(result, genRecordFieldsAux(m, k, ae, rectype, check))
else: internalError("genRecordFieldsAux(record case branch)")
appf(result, "} $1;$n", [uname])
of nkSym:
field = n.sym
#assert(field.ast == nil)
sname = mangleRecFieldName(field, rectype)
if accessExpr != nil: ae = ropef("$1.$2", [accessExpr, sname])
else: ae = sname
fillLoc(field.loc, locField, field.typ, ae, OnUnknown)
appf(result, "$1 $2;$n", [getTypeDescAux(m, field.loc.t, check), sname])
else: internalError(n.info, "genRecordFieldsAux()")
proc getRecordFields(m: BModule, typ: PType, check: var TIntSet): PRope =
result = genRecordFieldsAux(m, typ.n, nil, typ, check)
proc getRecordDesc(m: BModule, typ: PType, name: PRope,
check: var TIntSet): PRope =
# declare the record:
var hasField = false
if typ.kind == tyObject:
if typ.sons[0] == nil:
if (typ.sym != nil and sfPure in typ.sym.flags) or tfFinal in typ.flags:
result = ropecg(m, "struct $1 {$n", [name])
else:
result = ropecg(m, "struct $1 {$n#TNimType* m_type;$n", [name])
hasField = true
elif gCmd == cmdCompileToCpp:
result = ropecg(m, "struct $1 : public $2 {$n",
[name, getTypeDescAux(m, typ.sons[0], check)])
hasField = true
else:
result = ropecg(m, "struct $1 {$n $2 Sup;$n",
[name, getTypeDescAux(m, typ.sons[0], check)])
hasField = true
else:
result = ropef("struct $1 {$n", [name])
var desc = getRecordFields(m, typ, check)
if (desc == nil) and not hasField:
appf(result, "char dummy;$n", [])
else:
app(result, desc)
app(result, "};" & tnl)
proc getTupleDesc(m: BModule, typ: PType, name: PRope,
check: var TIntSet): PRope =
result = ropef("struct $1 {$n", [name])
var desc: PRope = nil
for i in countup(0, sonsLen(typ) - 1):
appf(desc, "$1 Field$2;$n",
[getTypeDescAux(m, typ.sons[i], check), toRope(i)])
if (desc == nil): app(result, "char dummy;" & tnl)
else: app(result, desc)
app(result, "};" & tnl)
proc pushType(m: BModule, typ: PType) =
add(m.typeStack, typ)
proc getTypeDescAux(m: BModule, typ: PType, check: var TIntSet): PRope =
# returns only the type's name
var
name, rettype, desc, recdesc: PRope
n: biggestInt
t, et: PType
t = getUniqueType(typ)
if t == nil: InternalError("getTypeDescAux: t == nil")
if t.sym != nil: useHeader(m, t.sym)
result = getTypePre(m, t)
if result != nil: return
if ContainsOrIncl(check, t.id):
InternalError("cannot generate C type for: " & typeToString(typ))
# XXX: this BUG is hard to fix -> we need to introduce helper structs,
# but determining when this needs to be done is hard. We should split
# C type generation into an analysis and a code generation phase somehow.
case t.Kind
of tyRef, tyPtr, tyVar:
et = getUniqueType(t.sons[0])
if et.kind in {tyArrayConstr, tyArray, tyOpenArray}:
# this is correct! sets have no proper base type, so we treat
# ``var set[char]`` in `getParamTypeDesc`
et = getUniqueType(elemType(et))
case et.Kind
of tyObject, tyTuple:
# no restriction! We have a forward declaration for structs
name = getTypeForward(m, et)
result = con(name, "*")
IdTablePut(m.typeCache, t, result)
pushType(m, et)
of tySequence:
# no restriction! We have a forward declaration for structs
name = getTypeForward(m, et)
result = con(name, "**")
IdTablePut(m.typeCache, t, result)
pushType(m, et)
else:
# else we have a strong dependency :-(
result = con(getTypeDescAux(m, et, check), "*")
IdTablePut(m.typeCache, t, result)
of tyOpenArray:
et = getUniqueType(t.sons[0])
result = con(getTypeDescAux(m, et, check), "*")
IdTablePut(m.typeCache, t, result)
of tyProc:
result = getTypeName(t)
IdTablePut(m.typeCache, t, result)
genProcParams(m, t, rettype, desc, check)
if not isImportedType(t):
if t.callConv != ccClosure: # procedure vars may need a closure!
appf(m.s[cfsTypes], "typedef $1_PTR($2, $3) $4;$n",
[toRope(CallingConvToStr[t.callConv]), rettype, result, desc])
else:
appf(m.s[cfsTypes], "typedef struct {$n" &
"N_NIMCALL_PTR($2, ClPrc) $3;$n" &
"void* ClEnv;$n} $1;$n",
[result, rettype, desc])
of tySequence:
# we cannot use getTypeForward here because then t would be associated
# with the name of the struct, not with the pointer to the struct:
result = CacheGetType(m.forwTypeCache, t)
if result == nil:
result = getTypeName(t)
if not isImportedType(t):
appf(m.s[cfsForwardTypes], getForwardStructFormat(), [result])
IdTablePut(m.forwTypeCache, t, result)
assert(CacheGetType(m.typeCache, t) == nil)
IdTablePut(m.typeCache, t, con(result, "*"))
if not isImportedType(t):
if skipTypes(t.sons[0], abstractInst).kind != tyEmpty:
const
cppSeq = "struct $2 : #TGenericSeq {$n"
cSeq = "struct $2 {$n" &
" #TGenericSeq Sup;$n"
appcg(m, m.s[cfsSeqTypes],
(if gCmd == cmdCompileToCpp: cppSeq else: cSeq) &
" $1 data[SEQ_DECL_SIZE];$n" &
"};$n", [getTypeDescAux(m, t.sons[0], check), result])
else:
result = toRope("TGenericSeq")
app(result, "*")
of tyArrayConstr, tyArray:
n = lengthOrd(t)
if n <= 0:
n = 1 # make an array of at least one element
result = getTypeName(t)
IdTablePut(m.typeCache, t, result)
if not isImportedType(t):
appf(m.s[cfsTypes], "typedef $1 $2[$3];$n",
[getTypeDescAux(m, t.sons[1], check), result, ToRope(n)])
of tyObject, tyTuple:
result = CacheGetType(m.forwTypeCache, t)
if result == nil:
result = getTypeName(t)
if not isImportedType(t):
appf(m.s[cfsForwardTypes], getForwardStructFormat(), [result])
IdTablePut(m.forwTypeCache, t, result)
IdTablePut(m.typeCache, t, result) # always call for sideeffects:
if t.kind != tyTuple: recdesc = getRecordDesc(m, t, result, check)
else: recdesc = getTupleDesc(m, t, result, check)
if not isImportedType(t): app(m.s[cfsTypes], recdesc)
of tySet:
case int(getSize(t))
of 1: result = toRope("NU8")
of 2: result = toRope("NU16")
of 4: result = toRope("NU32")
of 8: result = toRope("NU64")
else:
result = getTypeName(t)
IdTablePut(m.typeCache, t, result)
if not isImportedType(t):
appf(m.s[cfsTypes], "typedef NU8 $1[$2];$n",
[result, toRope(getSize(t))])
of tyGenericInst, tyDistinct, tyOrdinal, tyConst, tyMutable, tyIter:
result = getTypeDescAux(m, lastSon(t), check)
else:
InternalError("getTypeDescAux(" & $t.kind & ')')
result = nil
# fixes bug #145:
excl(check, t.id)
proc getTypeDesc(m: BModule, typ: PType): PRope =
var check = initIntSet()
result = getTypeDescAux(m, typ, check)
type
TClosureTypeKind = enum
clHalf, clHalfWithEnv, clFull
proc getClosureType(m: BModule, t: PType, kind: TClosureTypeKind): PRope =
assert t.kind == tyProc
var check = initIntSet()
result = getTempName()
var rettype, desc: PRope
genProcParams(m, t, rettype, desc, check, declareEnvironment=kind != clHalf)
if not isImportedType(t):
if t.callConv != ccClosure or kind != clFull:
appf(m.s[cfsTypes], "typedef $1_PTR($2, $3) $4;$n",
[toRope(CallingConvToStr[t.callConv]), rettype, result, desc])
else:
appf(m.s[cfsTypes], "typedef struct {$n" &
"N_NIMCALL_PTR($2, ClPrc) $3;$n" &
"void* ClEnv;$n} $1;$n",
[result, rettype, desc])
proc getTypeDesc(m: BModule, magic: string): PRope =
var sym = magicsys.getCompilerProc(magic)
if sym != nil:
result = getTypeDesc(m, sym.typ)
else:
rawMessage(errSystemNeeds, magic)
result = nil
proc finishTypeDescriptions(m: BModule) =
var i = 0
while i < len(m.typeStack):
discard getTypeDesc(m, m.typeStack[i])
inc(i)
proc genProcHeader(m: BModule, prc: PSym): PRope =
var
rettype, params: PRope
genCLineDir(result, prc.info)
# using static is needed for inline procs
if gCmd != cmdCompileToLLVM and lfExportLib in prc.loc.flags:
result.app "N_LIB_EXPORT "
elif prc.typ.callConv == ccInline:
result.app "static "
var check = initIntSet()
fillLoc(prc.loc, locProc, prc.typ, mangleName(prc), OnUnknown)
genProcParams(m, prc.typ, rettype, params, check)
# careful here! don't access ``prc.ast`` as that could reload large parts of
# the object graph!
appf(result, "$1($2, $3)$4",
[toRope(CallingConvToStr[prc.typ.callConv]), rettype, prc.loc.r, params])
# ------------------ type info generation -------------------------------------
proc genTypeInfo(m: BModule, typ: PType): PRope
proc getNimNode(m: BModule): PRope =
result = ropef("$1[$2]", [m.typeNodesName, toRope(m.typeNodes)])
inc(m.typeNodes)
proc getNimType(m: BModule): PRope =
result = ropef("$1[$2]", [m.nimTypesName, toRope(m.nimTypes)])
inc(m.nimTypes)
proc allocMemTI(m: BModule, typ: PType, name: PRope) =
var tmp = getNimType(m)
appf(m.s[cfsTypeInit2], "$2 = &$1;$n", [tmp, name])
proc genTypeInfoAuxBase(m: BModule, typ: PType, name, base: PRope) =
var nimtypeKind: int
allocMemTI(m, typ, name)
if (typ.kind == tyObject) and (tfFinal in typ.flags) and
(typ.sons[0] == nil):
nimtypeKind = ord(tyPureObject)
else:
nimtypeKind = ord(typ.kind)
var size: PRope
if tfIncompleteStruct in typ.flags: size = toRope"void*"
else: size = getTypeDesc(m, typ)
appf(m.s[cfsTypeInit3],
"$1->size = sizeof($2);$n" & "$1->kind = $3;$n" & "$1->base = $4;$n",
[name, size, toRope(nimtypeKind), base])
# compute type flags for GC optimization
var flags = 0
if not containsGarbageCollectedRef(typ): flags = flags or 1
if not canFormAcycle(typ): flags = flags or 2
#else MessageOut("can contain a cycle: " & typeToString(typ))
if flags != 0:
appf(m.s[cfsTypeInit3], "$1->flags = $2;$n", [name, toRope(flags)])
appf(m.s[cfsVars], "TNimType* $1; /* $2 */$n",
[name, toRope(typeToString(typ))])
proc genTypeInfoAux(m: BModule, typ: PType, name: PRope) =
var base: PRope
if (sonsLen(typ) > 0) and (typ.sons[0] != nil):
base = genTypeInfo(m, typ.sons[0])
else:
base = toRope("0")
genTypeInfoAuxBase(m, typ, name, base)
proc discriminatorTableName(m: BModule, objtype: PType, d: PSym): PRope =
if objType.sym == nil:
InternalError(d.info, "anonymous obj with discriminator")
result = ropef("NimDT_$1_$2", [
toRope(objType.sym.name.s), toRope(d.name.s)])
proc discriminatorTableDecl(m: BModule, objtype: PType, d: PSym): PRope =
discard cgsym(m, "TNimNode")
var tmp = discriminatorTableName(m, objtype, d)
result = ropef("TNimNode* $1[$2];$n", [tmp, toRope(lengthOrd(d.typ)+1)])
proc genObjectFields(m: BModule, typ: PType, n: PNode, expr: PRope) =
case n.kind
of nkRecList:
var L = sonsLen(n)
if L == 1:
genObjectFields(m, typ, n.sons[0], expr)
elif L > 0:
var tmp = getTempName()
appf(m.s[cfsTypeInit1], "static TNimNode* $1[$2];$n", [tmp, toRope(L)])
for i in countup(0, L-1):
var tmp2 = getNimNode(m)
appf(m.s[cfsTypeInit3], "$1[$2] = &$3;$n", [tmp, toRope(i), tmp2])
genObjectFields(m, typ, n.sons[i], tmp2)
appf(m.s[cfsTypeInit3], "$1.len = $2; $1.kind = 2; $1.sons = &$3[0];$n",
[expr, toRope(L), tmp])
else:
appf(m.s[cfsTypeInit3], "$1.len = $2; $1.kind = 2;$n", [expr, toRope(L)])
of nkRecCase:
assert(n.sons[0].kind == nkSym)
var field = n.sons[0].sym
var tmp = discriminatorTableName(m, typ, field)
var L = lengthOrd(field.typ)
assert L > 0
appf(m.s[cfsTypeInit3], "$1.kind = 3;$n" &
"$1.offset = offsetof($2, $3);$n" & "$1.typ = $4;$n" &
"$1.name = $5;$n" & "$1.sons = &$6[0];$n" &
"$1.len = $7;$n", [expr, getTypeDesc(m, typ), field.loc.r,
genTypeInfo(m, field.typ),
makeCString(field.name.s),
tmp, toRope(L)])
appf(m.s[cfsData], "TNimNode* $1[$2];$n", [tmp, toRope(L+1)])
for i in countup(1, sonsLen(n)-1):
var b = n.sons[i] # branch
var tmp2 = getNimNode(m)
genObjectFields(m, typ, lastSon(b), tmp2)
case b.kind
of nkOfBranch:
if sonsLen(b) < 2:
internalError(b.info, "genObjectFields; nkOfBranch broken")
for j in countup(0, sonsLen(b) - 2):
if b.sons[j].kind == nkRange:
var x = int(getOrdValue(b.sons[j].sons[0]))
var y = int(getOrdValue(b.sons[j].sons[1]))
while x <= y:
appf(m.s[cfsTypeInit3], "$1[$2] = &$3;$n", [tmp, toRope(x), tmp2])
inc(x)
else:
appf(m.s[cfsTypeInit3], "$1[$2] = &$3;$n",
[tmp, toRope(getOrdValue(b.sons[j])), tmp2])
of nkElse:
appf(m.s[cfsTypeInit3], "$1[$2] = &$3;$n",
[tmp, toRope(L), tmp2])
else: internalError(n.info, "genObjectFields(nkRecCase)")
of nkSym:
var field = n.sym
appf(m.s[cfsTypeInit3], "$1.kind = 1;$n" &
"$1.offset = offsetof($2, $3);$n" & "$1.typ = $4;$n" &
"$1.name = $5;$n", [expr, getTypeDesc(m, typ),
field.loc.r, genTypeInfo(m, field.typ), makeCString(field.name.s)])
else: internalError(n.info, "genObjectFields")
proc genObjectInfo(m: BModule, typ: PType, name: PRope) =
if typ.kind == tyObject: genTypeInfoAux(m, typ, name)
else: genTypeInfoAuxBase(m, typ, name, toRope("0"))
var tmp = getNimNode(m)
genObjectFields(m, typ, typ.n, tmp)
appf(m.s[cfsTypeInit3], "$1->node = &$2;$n", [name, tmp])
proc genTupleInfo(m: BModule, typ: PType, name: PRope) =
genTypeInfoAuxBase(m, typ, name, toRope("0"))
var expr = getNimNode(m)
var length = sonsLen(typ)
if length > 0:
var tmp = getTempName()
appf(m.s[cfsTypeInit1], "static TNimNode* $1[$2];$n", [tmp, toRope(length)])
for i in countup(0, length - 1):
var a = typ.sons[i]
var tmp2 = getNimNode(m)
appf(m.s[cfsTypeInit3], "$1[$2] = &$3;$n", [tmp, toRope(i), tmp2])
appf(m.s[cfsTypeInit3], "$1.kind = 1;$n" &
"$1.offset = offsetof($2, Field$3);$n" &
"$1.typ = $4;$n" &
"$1.name = \"Field$3\";$n",
[tmp2, getTypeDesc(m, typ), toRope(i), genTypeInfo(m, a)])
appf(m.s[cfsTypeInit3], "$1.len = $2; $1.kind = 2; $1.sons = &$3[0];$n",
[expr, toRope(length), tmp])
else:
appf(m.s[cfsTypeInit3], "$1.len = $2; $1.kind = 2;$n",
[expr, toRope(length)])
appf(m.s[cfsTypeInit3], "$1->node = &$2;$n", [name, expr])
proc genEnumInfo(m: BModule, typ: PType, name: PRope) =
# Type information for enumerations is quite heavy, so we do some
# optimizations here: The ``typ`` field is never set, as it is redundant
# anyway. We generate a cstring array and a loop over it. Exceptional
# positions will be reset after the loop.
genTypeInfoAux(m, typ, name)
var nodePtrs = getTempName()
var length = sonsLen(typ.n)
appf(m.s[cfsTypeInit1], "static TNimNode* $1[$2];$n",
[nodePtrs, toRope(length)])
var enumNames, specialCases: PRope
var firstNimNode = m.typeNodes
var hasHoles = false
for i in countup(0, length - 1):
assert(typ.n.sons[i].kind == nkSym)
var field = typ.n.sons[i].sym
var elemNode = getNimNode(m)
if field.ast == nil:
# no explicit string literal for the enum field, so use field.name:
app(enumNames, makeCString(field.name.s))
else:
app(enumNames, makeCString(field.ast.strVal))
if i < length - 1: app(enumNames, ", " & tnl)
if field.position != i or tfEnumHasHoles in typ.flags:
appf(specialCases, "$1.offset = $2;$n", [elemNode, toRope(field.position)])
hasHoles = true
var enumArray = getTempName()
var counter = getTempName()
appf(m.s[cfsTypeInit1], "NI $1;$n", [counter])
appf(m.s[cfsTypeInit1], "static char* NIM_CONST $1[$2] = {$n$3};$n",
[enumArray, toRope(length), enumNames])
appf(m.s[cfsTypeInit3], "for ($1 = 0; $1 < $2; $1++) {$n" &
"$3[$1+$4].kind = 1;$n" & "$3[$1+$4].offset = $1;$n" &
"$3[$1+$4].name = $5[$1];$n" & "$6[$1] = &$3[$1+$4];$n" & "}$n", [counter,
toRope(length), m.typeNodesName, toRope(firstNimNode), enumArray, nodePtrs])
app(m.s[cfsTypeInit3], specialCases)
appf(m.s[cfsTypeInit3],
"$1.len = $2; $1.kind = 2; $1.sons = &$3[0];$n$4->node = &$1;$n",
[getNimNode(m), toRope(length), nodePtrs, name])
if hasHoles:
# 1 << 2 is {ntfEnumHole}
appf(m.s[cfsTypeInit3], "$1->flags = 1<<2;$n", [name])
proc genSetInfo(m: BModule, typ: PType, name: PRope) =
assert(typ.sons[0] != nil)
genTypeInfoAux(m, typ, name)
var tmp = getNimNode(m)
appf(m.s[cfsTypeInit3], "$1.len = $2; $1.kind = 0;$n" & "$3->node = &$1;$n",
[tmp, toRope(firstOrd(typ)), name])
proc genArrayInfo(m: BModule, typ: PType, name: PRope) =
genTypeInfoAuxBase(m, typ, name, genTypeInfo(m, typ.sons[1]))
proc fakeClosureType(owner: PSym): PType =
# we generate the same RTTI as for a tuple[pointer, ref tuple[]]
result = newType(tyTuple, owner)
result.addSon(newType(tyPointer, owner))
var r = newType(tyRef, owner)
r.addSon(newType(tyTuple, owner))
result.addSon(r)
type
TTypeInfoReason = enum ## for what do we need the type info?
tiNew, ## for 'new'
tiNewSeq, ## for 'newSeq'
tiNonVariantAsgn, ## for generic assignment without variants
tiVariantAsgn ## for generic assignment with variants
include ccgtrav
proc genTypeInfo(m: BModule, typ: PType): PRope =
var t = getUniqueType(typ)
# gNimDat contains all the type information nowadays:
var dataGenerated = ContainsOrIncl(gNimDat.typeInfoMarker, t.id)
result = ropef("NTI$1", [toRope(t.id)])
if not ContainsOrIncl(m.typeInfoMarker, t.id):
# declare type information structures:
discard cgsym(m, "TNimType")
discard cgsym(m, "TNimNode")
appf(m.s[cfsVars], "extern TNimType* $1; /* $2 */$n",
[result, toRope(typeToString(t))])
if dataGenerated: return
case t.kind
of tyEmpty: result = toRope"0"
of tyPointer, tyBool, tyChar, tyCString, tyString, tyInt..tyUInt64, tyVar:
genTypeInfoAuxBase(gNimDat, t, result, toRope"0")
of tyProc:
if t.callConv != ccClosure:
genTypeInfoAuxBase(gNimDat, t, result, toRope"0")
else:
genTupleInfo(gNimDat, fakeClosureType(t.owner), result)
of tySequence, tyRef:
genTypeInfoAux(gNimDat, t, result)
if optRefcGC in gGlobalOptions:
let markerProc = genTraverseProc(gNimDat, t, tiNew)
appf(gNimDat.s[cfsTypeInit3], "$1->marker = $2;$n", [result, markerProc])
of tyPtr, tyRange: genTypeInfoAux(gNimDat, t, result)
of tyArrayConstr, tyArray: genArrayInfo(gNimDat, t, result)
of tySet: genSetInfo(gNimDat, t, result)
of tyEnum: genEnumInfo(gNimDat, t, result)
of tyObject: genObjectInfo(gNimDat, t, result)
of tyTuple:
# if t.n != nil: genObjectInfo(gNimDat, t, result)
# else:
# BUGFIX: use consistently RTTI without proper field names; otherwise
# results are not deterministic!
genTupleInfo(gNimDat, t, result)
else: InternalError("genTypeInfo(" & $t.kind & ')')
proc genTypeSection(m: BModule, n: PNode) =
nil