about summary refs log tree commit diff stats
path: root/failed.sh
diff options
context:
space:
mode:
Diffstat (limited to 'failed.sh')
0 files changed, 0 insertions, 0 deletions
>49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
#
#
#           The Nim Compiler
#        (c) Copyright 2017 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#

## Injects destructor calls into Nim code as well as
## an optimizer that optimizes copies to moves. This is implemented as an
## AST to AST transformation so that every backend benefits from it.

## Rules for destructor injections:
##
## foo(bar(X(), Y()))
## X and Y get destroyed after bar completes:
##
## foo( (tmpX = X(); tmpY = Y(); tmpBar = bar(tmpX, tmpY);
##       destroy(tmpX); destroy(tmpY);
##       tmpBar))
## destroy(tmpBar)
##
## var x = f()
## body
##
## is the same as:
##
##  var x;
##  try:
##    move(x, f())
##  finally:
##    destroy(x)
##
## But this really just an optimization that tries to avoid to
## introduce too many temporaries, the 'destroy' is caused by
## the 'f()' call. No! That is not true for 'result = f()'!
##
## x = y where y is read only once
## is the same as:  move(x, y)
##
## Actually the more general rule is: The *last* read of ``y``
## can become a move if ``y`` is the result of a construction.
##
## We also need to keep in mind here that the number of reads is
## control flow dependent:
## let x = foo()
## while true:
##   y = x  # only one read, but the 2nd iteration will fail!
## This also affects recursions! Only usages that do not cross
## a loop boundary (scope) and are not used in function calls
## are safe.
##
##
## x = f() is the same as:  move(x, f())
##
## x = y
## is the same as:  copy(x, y)
##
## Reassignment works under this scheme:
## var x = f()
## x = y
##
## is the same as:
##
##  var x;
##  try:
##    move(x, f())
##    copy(x, y)
##  finally:
##    destroy(x)
##
##  result = f()  must not destroy 'result'!
##
## The produced temporaries clutter up the code and might lead to
## inefficiencies. A better strategy is to collect all the temporaries
## in a single object that we put into a single try-finally that
## surrounds the proc body. This means the code stays quite efficient
## when compiled to C. In fact, we do the same for variables, so
## destructors are called when the proc returns, not at scope exit!
## This makes certains idioms easier to support. (Taking the slice
## of a temporary object.)
##
## foo(bar(X(), Y()))
## X and Y get destroyed after bar completes:
##
## var tmp: object
## foo( (move tmp.x, X(); move tmp.y, Y(); tmp.bar = bar(tmpX, tmpY);
##       tmp.bar))
## destroy(tmp.bar)
## destroy(tmp.x); destroy(tmp.y)
##

##[
From https://github.com/nim-lang/Nim/wiki/Destructors

Rule      Pattern                 Transformed into
----      -------                 ----------------
1.1	      var x: T; stmts	        var x: T; try stmts
                                  finally: `=destroy`(x)
1.2       var x: sink T; stmts    var x: sink T; stmts; ensureEmpty(x)
2         x = f()                 `=sink`(x, f())
3         x = lastReadOf z        `=sink`(x, z); wasMoved(z)
4.1       y = sinkParam           `=sink`(y, sinkParam)
4.2       x = y                   `=`(x, y) # a copy
5.1       f_sink(g())             f_sink(g())
5.2       f_sink(y)               f_sink(copy y); # copy unless we can see it's the last read
5.3       f_sink(move y)          f_sink(y); wasMoved(y) # explicit moves empties 'y'
5.4       f_noSink(g())           var tmp = bitwiseCopy(g()); f(tmp); `=destroy`(tmp)

Remarks: Rule 1.2 is not yet implemented because ``sink`` is currently
  not allowed as a local variable.

``move`` builtin needs to be implemented.
]##

import
  intsets, ast, astalgo, msgs, renderer, magicsys, types, idents, trees,
  strutils, options, dfa, lowerings, tables, modulegraphs, msgs,
  lineinfos, parampatterns

const
  InterestingSyms = {skVar, skResult, skLet}

type
  Con = object
    owner: PSym
    g: ControlFlowGraph
    jumpTargets: IntSet
    destroys, topLevelVars: PNode
    graph: ModuleGraph
    emptyNode: PNode
    otherRead: PNode


proc isHarmlessVar*(s: PSym; c: Con): bool =
  # 's' is harmless if it used only once and its
  # definition/usage are not split by any labels:
  #
  # let s = foo()
  # while true:
  #   a[i] = s
  #
  # produces:
  #
  # def s
  # L1:
  #   use s
  # goto L1
  #
  # let s = foo()
  # if cond:
  #   a[i] = s
  # else:
  #   a[j] = s
  #
  # produces:
  #
  # def s
  # fork L2
  # use s
  # goto L3
  # L2:
  # use s
  # L3
  #
  # So this analysis is for now overly conservative, but correct.
  var defsite = -1
  var usages = 0
  for i in 0..<c.g.len:
    case c.g[i].kind
    of def:
      if c.g[i].sym == s:
        if defsite < 0: defsite = i
        else: return false
    of use:
      if c.g[i].sym == s:
        if defsite < 0: return false
        for j in defsite .. i:
          # not within the same basic block?
          if j in c.jumpTargets: return false
        # if we want to die after the first 'use':
        if usages > 1: return false
        inc usages
    #of useWithinCall:
    #  if c.g[i].sym == s: return false
    of goto, fork:
      discard "we do not perform an abstract interpretation yet"
  result = usages <= 1

proc isLastRead(n: PNode; c: var Con): bool =
  # first we need to search for the instruction that belongs to 'n':
  doAssert n.kind == nkSym
  c.otherRead = nil
  var instr = -1
  for i in 0..<c.g.len:
    if c.g[i].n == n:
      if instr < 0: instr = i
      else:
        # eh, we found two positions that belong to 'n'?
        # better return 'false' then:
        return false
  if instr < 0: return false
  # we go through all paths beginning from 'instr+1' and need to
  # ensure that we don't find another 'use X' instruction.
  if instr+1 >= c.g.len: return true
  let s = n.sym
  var pcs: seq[int] = @[instr+1]
  var takenGotos: IntSet
  var takenForks = initIntSet()
  while pcs.len > 0:
    var pc = pcs.pop

    takenGotos = initIntSet()
    while pc < c.g.len:
      case c.g[pc].kind
      of def:
        if c.g[pc].sym == s:
          # the path lead to a redefinition of 's' --> abandon it.
          when false:
            # Too complex thinking ahead: In reality it is enough to find
            # the 'def x' here on the current path to make the 'use x' valid.
            # but for this the definition needs to dominate the usage:
            var dominates = true
            for j in pc+1 .. instr:
              # not within the same basic block?
              if c.g[j].kind in {goto, fork} and (j + c.g[j].dest) in (pc+1 .. instr):
                #if j in c.jumpTargets:
                dominates = false
            if dominates: break
          break
        inc pc
      of use:
        if c.g[pc].sym == s:
          c.otherRead = c.g[pc].n
          return false
        inc pc
      of goto:
        # we must leave endless loops eventually:
        if not takenGotos.containsOrIncl(pc):
          pc = pc + c.g[pc].dest
        else:
          inc pc
      of fork:
        # we follow the next instruction but push the dest onto our "work" stack:
        if not takenForks.containsOrIncl(pc):
          pcs.add pc + c.g[pc].dest
        inc pc
  #echo c.graph.config $ n.info, " last read here!"
  return true

template interestingSym(s: PSym): bool =
  s.owner == c.owner and s.kind in InterestingSyms and hasDestructor(s.typ)

template isUnpackedTuple(s: PSym): bool =
  ## we move out all elements of unpacked tuples,
  ## hence unpacked tuples themselves don't need to be destroyed
  s.kind == skTemp and s.typ.kind == tyTuple

proc patchHead(n: PNode) =
  if n.kind in nkCallKinds and n[0].kind == nkSym and n.len > 1:
    let s = n[0].sym
    if s.name.s[0] == '=' and s.name.s in ["=sink", "=", "=destroy"]:
      if sfFromGeneric in s.flags:
        excl(s.flags, sfFromGeneric)
        patchHead(s.getBody)
      let t = n[1].typ.skipTypes({tyVar, tyLent, tyGenericInst, tyAlias, tySink, tyInferred})
      template patch(op, field) =
        if s.name.s == op and field != nil and field != s:
          n.sons[0].sym = field
      patch "=sink", t.sink
      patch "=", t.assignment
      patch "=destroy", t.destructor
  for x in n:
    patchHead(x)

proc patchHead(s: PSym) =
  if sfFromGeneric in s.flags:
    patchHead(s.ast[bodyPos])

proc checkForErrorPragma(c: Con; t: PType; ri: PNode; opname: string) =
  var m = "'" & opname & "' is not available for type <" & typeToString(t) & ">"
  if opname == "=" and ri != nil:
    m.add "; requires a copy because it's not the last read of '"
    m.add renderTree(ri)
    m.add '\''
    if c.otherRead != nil:
      m.add "; another read is done here: "
      m.add c.graph.config $ c.otherRead.info
  localError(c.graph.config, ri.info, errGenerated, m)

proc makePtrType(c: Con, baseType: PType): PType =
  result = newType(tyPtr, c.owner)
  addSonSkipIntLit(result, baseType)

template genOp(opr, opname, ri) =
  let op = opr
  if op == nil:
    globalError(c.graph.config, dest.info, "internal error: '" & opname &
      "' operator not found for type " & typeToString(t))
  elif op.ast[genericParamsPos].kind != nkEmpty:
    globalError(c.graph.config, dest.info, "internal error: '" & opname & "' operator is generic")
  patchHead op
  if sfError in op.flags: checkForErrorPragma(c, t, ri, opname)
  let addrExp = newNodeIT(nkHiddenAddr, dest.info, makePtrType(c, dest.typ))
  addrExp.add(dest)
  result = newTree(nkCall, newSymNode(op), addrExp)

proc genSink(c: Con; t: PType; dest, ri: PNode): PNode =
  let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
  genOp(if t.sink != nil: t.sink else: t.assignment, "=sink", ri)

proc genCopy(c: Con; t: PType; dest, ri: PNode): PNode =
  let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
  genOp(t.assignment, "=", ri)

proc genDestroy(c: Con; t: PType; dest: PNode): PNode =
  let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
  genOp(t.destructor, "=destroy", nil)

proc addTopVar(c: var Con; v: PNode) =
  c.topLevelVars.add newTree(nkIdentDefs, v, c.emptyNode, c.emptyNode)

proc getTemp(c: var Con; typ: PType; info: TLineInfo): PNode =
  let sym = newSym(skTemp, getIdent(c.graph.cache, ":tmpD"), c.owner, info)
  sym.typ = typ
  result = newSymNode(sym)
  c.addTopVar(result)

proc p(n: PNode; c: var Con): PNode

template recurse(n, dest) =
  for i in 0..<n.len:
    dest.add p(n[i], c)

proc isSinkParam(s: PSym): bool {.inline.} =
  result = s.kind == skParam and s.typ.kind == tySink

proc genMagicCall(n: PNode; c: var Con; magicname: string; m: TMagic): PNode =
  result = newNodeI(nkCall, n.info)
  result.add(newSymNode(createMagic(c.graph, magicname, m)))
  result.add n

proc genWasMoved(n: PNode; c: var Con): PNode =
  # The mWasMoved builtin does not take the address.
  result = genMagicCall(n, c, "wasMoved", mWasMoved)

proc destructiveMoveVar(n: PNode; c: var Con): PNode =
  # generate: (let tmp = v; reset(v); tmp)
  # XXX: Strictly speaking we can only move if there is a ``=sink`` defined
  # or if no ``=sink`` is defined and also no assignment.
  result = newNodeIT(nkStmtListExpr, n.info, n.typ)

  var temp = newSym(skLet, getIdent(c.graph.cache, "blitTmp"), c.owner, n.info)
  temp.typ = n.typ
  var v = newNodeI(nkLetSection, n.info)
  let tempAsNode = newSymNode(temp)

  var vpart = newNodeI(nkIdentDefs, tempAsNode.info, 3)
  vpart.sons[0] = tempAsNode
  vpart.sons[1] = c.emptyNode
  vpart.sons[2] = n
  add(v, vpart)

  result.add v
  result.add genWasMoved(n, c)
  result.add tempAsNode

proc sinkParamIsLastReadCheck(c: var Con, s: PNode) =
  assert s.kind == nkSym and s.sym.kind == skParam
  if not isLastRead(s, c):
     localError(c.graph.config, c.otherRead.info, "sink parameter `" & $s.sym.name.s &
         "` is already consumed at " & toFileLineCol(c. graph.config, s.info))

proc passCopyToSink(n: PNode; c: var Con): PNode =
  result = newNodeIT(nkStmtListExpr, n.info, n.typ)
  let tmp = getTemp(c, n.typ, n.info)
  if hasDestructor(n.typ):
    var m = genCopy(c, n.typ, tmp, n)
    m.add p(n, c)
    result.add m
    if isLValue(n):
      message(c.graph.config, n.info, hintPerformance,
        ("passing '$1' to a sink parameter introduces an implicit copy; " &
        "use 'move($1)' to prevent it") % $n)
  else:
    result.add newTree(nkAsgn, tmp, p(n, c))
  result.add tmp

proc pArg(arg: PNode; c: var Con; isSink: bool): PNode =
  template pArgIfTyped(arg_part: PNode): PNode =
    # typ is nil if we are in if/case expr branch with noreturn
    if arg_part.typ == nil: p(arg_part, c)
    else: pArg(arg_part, c, isSink)

  if isSink:
    if arg.kind in nkCallKinds:
      # recurse but skip the call expression in order to prevent
      # destructor injections: Rule 5.1 is different from rule 5.4!
      result = copyNode(arg)
      let parameters = arg[0].typ
      let L = if parameters != nil: parameters.len else: 0
      result.add arg[0]
      for i in 1..<arg.len:
        result.add pArg(arg[i], c, i < L and parameters[i].kind == tySink)
    elif arg.kind in {nkBracket, nkObjConstr, nkTupleConstr, nkBracket, nkCharLit..nkFloat128Lit}:
      discard "object construction to sink parameter: nothing to do"
      result = arg
    elif arg.kind == nkSym and isSinkParam(arg.sym):
      # Sinked params can be consumed only once. We need to reset the memory
      # to disable the destructor which we have not elided
      sinkParamIsLastReadCheck(c, arg)
      result = destructiveMoveVar(arg, c)
    elif arg.kind == nkSym and arg.sym.kind in InterestingSyms and isLastRead(arg, c):
      # it is the last read, can be sinked. We need to reset the memory
      # to disable the destructor which we have not elided
      result = destructiveMoveVar(arg, c)
    elif arg.kind in {nkBlockExpr, nkBlockStmt}:
      result = copyNode(arg)
      result.add arg[0]
      result.add pArg(arg[1], c, isSink)
    elif arg.kind == nkStmtListExpr:
      result = copyNode(arg)
      for i in 0..arg.len-2:
        result.add p(arg[i], c)
      result.add pArg(arg[^1], c, isSink)
    elif arg.kind in {nkIfExpr, nkIfStmt}:
      result = copyNode(arg)
      for i in 0..<arg.len:
        var branch = copyNode(arg[i])
        if arg[i].kind in {nkElifBranch, nkElifExpr}:
          branch.add p(arg[i][0], c)
          branch.add pArgIfTyped(arg[i][1])
        else:
          branch.add pArgIfTyped(arg[i][0])
        result.add branch
    elif arg.kind == nkCaseStmt:
      result = copyNode(arg)
      result.add p(arg[0], c)
      for i in 1..<arg.len:
        var branch: PNode
        if arg[i].kind == nkOfbranch:
          branch = arg[i] # of branch conditions are constants
          branch[^1] = pArgIfTyped(arg[i][^1])
        elif arg[i].kind in {nkElifBranch, nkElifExpr}:
          branch = copyNode(arg[i])
          branch.add p(arg[i][0], c)
          branch.add pArgIfTyped(arg[i][1])
        else:
          branch = copyNode(arg[i])
          branch.add pArgIfTyped(arg[i][0])
        result.add branch
    else:
      # an object that is not temporary but passed to a 'sink' parameter
      # results in a copy.
      result = passCopyToSink(arg, c)
  else:
    result = p(arg, c)

proc moveOrCopy(dest, ri: PNode; c: var Con): PNode =
  template moveOrCopyIfTyped(ri_part: PNode): PNode =
    # typ is nil if we are in if/case expr branch with noreturn
    if ri_part.typ == nil: p(ri_part, c)
    else: moveOrCopy(dest, ri_part, c)

  case ri.kind
  of nkCallKinds:
    result = genSink(c, dest.typ, dest, ri)
    # watch out and no not transform 'ri' twice if it's a call:
    let ri2 = copyNode(ri)
    let parameters = ri[0].typ
    let L = if parameters != nil: parameters.len else: 0
    ri2.add ri[0]
    for i in 1..<ri.len:
      ri2.add pArg(ri[i], c, i < L and parameters[i].kind == tySink)
    #recurse(ri, ri2)
    result.add ri2
  of nkBracketExpr:
    if ri[0].kind == nkSym and isUnpackedTuple(ri[0].sym):
      # unpacking of tuple: move out the elements
      result = genSink(c, dest.typ, dest, ri)
    else:
      result = genCopy(c, dest.typ, dest, ri)
    result.add p(ri, c)
  of nkStmtListExpr:
    result = newNodeI(nkStmtList, ri.info)
    for i in 0..ri.len-2:
      result.add p(ri[i], c)
    result.add moveOrCopy(dest, ri[^1], c)
  of nkBlockExpr, nkBlockStmt:
    result = newNodeI(nkBlockStmt, ri.info)
    result.add ri[0] ## add label
    result.add moveOrCopy(dest, ri[1], c)
  of nkIfExpr, nkIfStmt:
    result = newNodeI(nkIfStmt, ri.info)
    for i in 0..<ri.len:
      var branch = copyNode(ri[i])
      if ri[i].kind in {nkElifBranch, nkElifExpr}:
        branch.add p(ri[i][0], c)
        branch.add moveOrCopyIfTyped(ri[i][1])
      else:
        branch.add moveOrCopyIfTyped(ri[i][0])
      result.add branch
  of nkCaseStmt:
    result = newNodeI(nkCaseStmt, ri.info)
    result.add p(ri[0], c)
    for i in 1..<ri.len:
      var branch: PNode
      if ri[i].kind == nkOfbranch:
        branch = ri[i] # of branch conditions are constants
        branch[^1] = moveOrCopyIfTyped(ri[i][^1])
      elif ri[i].kind in {nkElifBranch, nkElifExpr}:
        branch = copyNode(ri[i])
        branch.add p(ri[i][0], c)
        branch.add moveOrCopyIfTyped(ri[i][1])
      else:
        branch = copyNode(ri[i])
        branch.add moveOrCopyIfTyped(ri[i][0])
      result.add branch
  of nkBracket:
    # array constructor
    result = genSink(c, dest.typ, dest, ri)
    let ri2 = copyTree(ri)
    for i in 0..<ri.len:
      # everything that is passed to an array constructor is consumed,
      # so these all act like 'sink' parameters:
      ri2[i] = pArg(ri[i], c, isSink = true)
    result.add ri2
  of nkObjConstr:
    result = genSink(c, dest.typ, dest, ri)
    let ri2 = copyTree(ri)
    for i in 1..<ri.len:
      # everything that is passed to an object constructor is consumed,
      # so these all act like 'sink' parameters:
      ri2[i].sons[1] = pArg(ri[i][1], c, isSink = true)
    result.add ri2
  of nkTupleConstr:
    result = genSink(c, dest.typ, dest, ri)
    let ri2 = copyTree(ri)
    for i in 0..<ri.len:
      # everything that is passed to an tuple constructor is consumed,
      # so these all act like 'sink' parameters:
      if ri[i].kind == nkExprColonExpr:
        ri2[i].sons[1] = pArg(ri[i][1], c, isSink = true)
      else:
        ri2[i] = pArg(ri[i], c, isSink = true)
    result.add ri2
  of nkSym:
    if isSinkParam(ri.sym):
      # Rule 3: `=sink`(x, z); wasMoved(z)
      sinkParamIsLastReadCheck(c, ri)
      var snk = genSink(c, dest.typ, dest, ri)
      snk.add ri
      result = newTree(nkStmtList, snk, genMagicCall(ri, c, "wasMoved", mWasMoved))
    elif ri.sym.kind != skParam and isLastRead(ri, c):
      # Rule 3: `=sink`(x, z); wasMoved(z)
      var snk = genSink(c, dest.typ, dest, ri)
      snk.add ri
      result = newTree(nkStmtList, snk, genMagicCall(ri, c, "wasMoved", mWasMoved))
    else:
      result = genCopy(c, dest.typ, dest, ri)
      result.add p(ri, c)
  else:
    result = genCopy(c, dest.typ, dest, ri)
    result.add p(ri, c)

proc p(n: PNode; c: var Con): PNode =
  case n.kind
  of nkVarSection, nkLetSection:
    discard "transform; var x = y to  var x; x op y  where op is a move or copy"
    result = newNodeI(nkStmtList, n.info)

    for i in 0..<n.len:
      let it = n[i]
      let L = it.len-1
      let ri = it[L]
      if it.kind == nkVarTuple and hasDestructor(ri.typ):
        let x = lowerTupleUnpacking(c.graph, it, c.owner)
        result.add p(x, c)
      elif it.kind == nkIdentDefs and hasDestructor(it[0].typ):
        for j in 0..L-2:
          let v = it[j]
          doAssert v.kind == nkSym
          # move the variable declaration to the top of the frame:
          c.addTopVar v
          # make sure it's destroyed at the end of the proc:
          if not isUnpackedTuple(it[0].sym):
            c.destroys.add genDestroy(c, v.typ, v)
          if ri.kind != nkEmpty:
            let r = moveOrCopy(v, ri, c)
            result.add r
      else:
        # keep it, but transform 'ri':
        var varSection = copyNode(n)
        var itCopy = copyNode(it)
        for j in 0..L-1:
          itCopy.add it[j]
        itCopy.add p(ri, c)
        varSection.add itCopy
        result.add varSection
  of nkCallKinds:
    let parameters = n[0].typ
    let L = if parameters != nil: parameters.len else: 0
    for i in 1 ..< n.len:
      n.sons[i] = pArg(n[i], c, i < L and parameters[i].kind == tySink)
    if n.typ != nil and hasDestructor(n.typ):
      discard "produce temp creation"
      result = newNodeIT(nkStmtListExpr, n.info, n.typ)
      let tmp = getTemp(c, n.typ, n.info)
      var sinkExpr = genSink(c, n.typ, tmp, n)
      sinkExpr.add n
      result.add sinkExpr
      result.add tmp
      c.destroys.add genDestroy(c, n.typ, tmp)
    else:
      result = n
  of nkAsgn, nkFastAsgn:
    if hasDestructor(n[0].typ):
      result = moveOrCopy(n[0], n[1], c)
    else:
      result = copyNode(n)
      recurse(n, result)
  of nkNone..nkNilLit, nkTypeSection, nkProcDef, nkConverterDef, nkMethodDef,
      nkIteratorDef, nkMacroDef, nkTemplateDef, nkLambda, nkDo, nkFuncDef:
    result = n
  else:
    result = copyNode(n)
    recurse(n, result)

proc injectDestructorCalls*(g: ModuleGraph; owner: PSym; n: PNode): PNode =
  when false: # defined(nimDebugDestroys):
    echo "injecting into ", n
  var c: Con
  c.owner = owner
  c.destroys = newNodeI(nkStmtList, n.info)
  c.topLevelVars = newNodeI(nkVarSection, n.info)
  c.graph = g
  c.emptyNode = newNodeI(nkEmpty, n.info)
  let cfg = constructCfg(owner, n)
  shallowCopy(c.g, cfg)
  c.jumpTargets = initIntSet()
  for i in 0..<c.g.len:
    if c.g[i].kind in {goto, fork}:
      c.jumpTargets.incl(i+c.g[i].dest)
  #if owner.name.s == "test0p1":
  #  echoCfg(c.g)
  if owner.kind in {skProc, skFunc, skMethod, skIterator, skConverter}:
    let params = owner.typ.n
    for i in 1 ..< params.len:
      let param = params[i].sym
      if param.typ.kind == tySink and hasDestructor(param.typ):
        c.destroys.add genDestroy(c, param.typ.skipTypes({tyGenericInst, tyAlias, tySink}), params[i])

  let body = p(n, c)
  result = newNodeI(nkStmtList, n.info)
  if c.topLevelVars.len > 0:
    result.add c.topLevelVars
  if c.destroys.len > 0:
    result.add newTryFinally(body, c.destroys)
  else:
    result.add body

  when defined(nimDebugDestroys):
    if true:
      echo "------------------------------------"
      echo owner.name.s, " transformed to: "
      echo result