summary refs log tree commit diff stats
path: root/uni_notes/algebra.html
diff options
context:
space:
mode:
authorCrystal <crystal@wizard.tower>2023-10-20 18:06:12 +0100
committerCrystal <crystal@wizard.tower>2023-10-20 18:06:12 +0100
commit452f36f66cf56bd8b92677d6b6bbfb69ce54cfe4 (patch)
tree585d0d333f391b645e99dfa9314b0309c1d64d10 /uni_notes/algebra.html
parent3b1929a28bf43fe486ed5b9ba4d2a07adcb34b5f (diff)
downloadwww-452f36f66cf56bd8b92677d6b6bbfb69ce54cfe4.tar.gz
Finally, an update
Diffstat (limited to 'uni_notes/algebra.html')
-rwxr-xr-xuni_notes/algebra.html1110
1 files changed, 640 insertions, 470 deletions
diff --git a/uni_notes/algebra.html b/uni_notes/algebra.html
index 2129e72..fd6602c 100755
--- a/uni_notes/algebra.html
+++ b/uni_notes/algebra.html
@@ -3,7 +3,7 @@
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
-<!-- 2023-10-17 Tue 22:32 -->
+<!-- 2023-10-20 Fri 15:12 -->
 <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <title>Algebra 1</title>
@@ -11,124 +11,233 @@
 <meta name="generator" content="Org Mode" />
 <link rel="stylesheet" type="text/css" href="../src/css/colors.css"/>
 <link rel="stylesheet" type="text/css" href="../src/css/style.css"/>
-<script>
-  window.MathJax = {
-    tex: {
-      ams: {
-        multlineWidth: '85%'
-      },
-      tags: 'ams',
-      tagSide: 'right',
-      tagIndent: '.8em'
-    },
-    chtml: {
-      scale: 1.0,
-      displayAlign: 'center',
-      displayIndent: '0em'
-    },
-    svg: {
-      scale: 1.0,
-      displayAlign: 'center',
-      displayIndent: '0em'
-    },
-    output: {
-      font: 'mathjax-modern',
-      displayOverflow: 'overflow'
-    }
-  };
-</script>
-
-<script
-  id="MathJax-script"
-  async
-  src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js">
-</script>
 </head>
 <body>
-<div id="content" class="content">
+<div id="org-div-home-and-up">
+ <a accesskey="h" href="../../../uni_notes/"> UP </a>
+ |
+ <a accesskey="H" href="https://crystal.tilde.institute/"> HOME </a>
+</div><div id="content" class="content">
 <h1 class="title">Algebra 1</h1>
-<div id="outline-container-org76eaba1" class="outline-2">
-<h2 id="org76eaba1">Contenu de la Matiére</h2>
-<div class="outline-text-2" id="text-org76eaba1">
+<div id="table-of-contents" role="doc-toc">
+<h2>Table of Contents</h2>
+<div id="text-table-of-contents" role="doc-toc">
+<ul>
+<li><a href="#orgdb6601b">Contenu de la Matiére</a>
+<ul>
+<li><a href="#orgc89165c">Rappels et compléments (11H)</a></li>
+<li><a href="#org1ae59da">Structures Algébriques (11H)</a></li>
+<li><a href="#orgdcb51e0">Polynômes et fractions rationnelles</a></li>
+</ul>
+</li>
+<li><a href="#org8356dfb">Premier cours : Logique mathématique et méthodes du raisonnement mathématique <i>Sep 25</i> :</a>
+<ul>
+<li><a href="#org4521340">Properties:</a>
+<ul>
+<li><a href="#org84e1ec3"><b>Absorption</b>:</a></li>
+<li><a href="#org2345992"><b>Commutativity</b>:</a></li>
+<li><a href="#orgfee557e"><b>Associativity</b>:</a></li>
+<li><a href="#orgb55cfb2"><b>Distributivity</b>:</a></li>
+<li><a href="#orgb0de2bb"><b>Neutral element</b>:</a></li>
+<li><a href="#orgb51e625"><b>Negation of a conjunction &amp; a disjunction</b>:</a></li>
+<li><a href="#org4e29124"><b>Transitivity</b>:</a></li>
+<li><a href="#org520b7b0"><b>Contraposition</b>:</a></li>
+<li><a href="#org8159635">God only knows what this property is called:</a></li>
+</ul>
+</li>
+<li><a href="#org4210e18">Some exercices I found online :</a>
+<ul>
+<li><a href="#org46d1ee6">USTHB 2022/2023 Section B :</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li><a href="#org732b9dd">2éme cours <i>Oct 2</i></a>
+<ul>
+<li><a href="#orgdfba00a">Quantifiers</a>
+<ul>
+<li><a href="#org93d5891">Proprieties</a></li>
+</ul>
+</li>
+<li><a href="#orgf21a239">Multi-parameter proprieties :</a></li>
+<li><a href="#org779f917">Methods of mathematical reasoning :</a>
+<ul>
+<li><a href="#orgc6832c3">Direct reasoning :</a></li>
+<li><a href="#orgf140b16">Reasoning by the Absurd:</a></li>
+<li><a href="#org320dc57">Reasoning by contraposition:</a></li>
+<li><a href="#org27943b2">Reasoning by counter example:</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li><a href="#orgfddd579">3eme Cours : <i>Oct 9</i></a>
+<ul>
+<li>
+<ul>
+<li><a href="#org21eab57">Reasoning by recurrence :</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li><a href="#org155c9a9">4eme Cours : Chapitre 2 : Sets and Operations</a>
+<ul>
+<li><a href="#org5bb0b39">Definition of a set :</a></li>
+<li><a href="#org469078a">Belonging, inclusion, and equality :</a></li>
+<li><a href="#org1461e60">Intersections and reunions :</a>
+<ul>
+<li><a href="#orgd9db499">Intersection:</a></li>
+<li><a href="#org0946751">Union:</a></li>
+<li><a href="#org8fb5e39">Difference between two sets:</a></li>
+<li><a href="#org17ec98b">Complimentary set:</a></li>
+<li><a href="#org61d7d25">Symentrical difference</a></li>
+</ul>
+</li>
+<li><a href="#org1e0c21a">Proprieties :</a>
+<ul>
+<li><a href="#orgaed74b7">Commutativity:</a></li>
+<li><a href="#org1d74822">Associativity:</a></li>
+<li><a href="#org667f4dd">Distributivity:</a></li>
+<li><a href="#org31c4f57">Lois de Morgan:</a></li>
+<li><a href="#orgc30ba1d">An other one:</a></li>
+<li><a href="#orgac52c86">An other one:</a></li>
+<li><a href="#orge0de23e">And an other one:</a></li>
+<li><a href="#org8277b0b">And the last one:</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li><a href="#orgeb2675e">5eme cours: L&rsquo;ensemble des parties d&rsquo;un ensemble <i>Oct 16</i></a>
+<ul>
+<li>
+<ul>
+<li><a href="#org2c7d514">Notes :</a></li>
+<li><a href="#org76da8f4">Examples :</a></li>
+</ul>
+</li>
+<li><a href="#org3da3de1">Partition of a set :</a></li>
+<li><a href="#org077b994">Cartesian products :</a>
+<ul>
+<li><a href="#org72822f5">Example :</a></li>
+<li><a href="#org04e1be3">Some proprieties:</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li><a href="#org416c1e1">Binary relations in a set :</a>
+<ul>
+<li><a href="#org5ea795f">Definition :</a></li>
+<li><a href="#orgb9d678f">Proprieties :</a></li>
+<li><a href="#org6df8952">Equivalence relationship :</a>
+<ul>
+<li><a href="#orgfbd9232">Equivalence class :</a></li>
+</ul>
+</li>
+<li><a href="#org9a36dc1">Order relationship :</a>
+<ul>
+<li><a href="#orgb496cba"><span class="todo TODO">TODO</span> Examples :</a></li>
+</ul>
+</li>
+</ul>
+</li>
+<li><a href="#org54d5489">TP exercices <i>Oct 20</i> :</a>
+<ul>
+<li><a href="#orgdfd55ca">Exercice 3 :</a>
+<ul>
+<li><a href="#org4100fe3">Question 3</a></li>
+</ul>
+</li>
+<li><a href="#org019b5e0">Exercice 4 :</a>
+<ul>
+<li><a href="#org2ae1181"><span class="done DONE">DONE</span> Question 1 :</a></li>
+</ul>
+</li>
+</ul>
+</li>
+</ul>
+</div>
+</div>
+<div id="outline-container-orgdb6601b" class="outline-2">
+<h2 id="orgdb6601b">Contenu de la Matiére</h2>
+<div class="outline-text-2" id="text-orgdb6601b">
 </div>
-<div id="outline-container-org2a89be2" class="outline-3">
-<h3 id="org2a89be2">Rappels et compléments (11H)</h3>
-<div class="outline-text-3" id="text-org2a89be2">
+<div id="outline-container-orgc89165c" class="outline-3">
+<h3 id="orgc89165c">Rappels et compléments (11H)</h3>
+<div class="outline-text-3" id="text-orgc89165c">
 <ul class="org-ul">
-<li>Logique mathématique et méthodes du raisonnement mathématique</li>
-<li>Ensembles et Relations</li>
-<li>Applications</li>
+<li>Logique mathématique et méthodes du raisonnement mathématique<br /></li>
+<li>Ensembles et Relations<br /></li>
+<li>Applications<br /></li>
 </ul>
 </div>
 </div>
-<div id="outline-container-orgfcd7f3f" class="outline-3">
-<h3 id="orgfcd7f3f">Structures Algébriques (11H)</h3>
-<div class="outline-text-3" id="text-orgfcd7f3f">
+<div id="outline-container-org1ae59da" class="outline-3">
+<h3 id="org1ae59da">Structures Algébriques (11H)</h3>
+<div class="outline-text-3" id="text-org1ae59da">
 <ul class="org-ul">
-<li>Groupes et morphisme de groupes</li>
-<li>Anneaux et morphisme d&rsquo;anneaux</li>
-<li>Les corps</li>
+<li>Groupes et morphisme de groupes<br /></li>
+<li>Anneaux et morphisme d&rsquo;anneaux<br /></li>
+<li>Les corps<br /></li>
 </ul>
 </div>
 </div>
-<div id="outline-container-org03cbf05" class="outline-3">
-<h3 id="org03cbf05">Polynômes et fractions rationnelles</h3>
-<div class="outline-text-3" id="text-org03cbf05">
+<div id="outline-container-orgdcb51e0" class="outline-3">
+<h3 id="orgdcb51e0">Polynômes et fractions rationnelles</h3>
+<div class="outline-text-3" id="text-orgdcb51e0">
 <ul class="org-ul">
-<li>Notion du polynôme à une indéterminée á coefficients dans un anneau</li>
-<li>Opérations Algébriques sur les polynômes</li>
-<li>Arithmétique dans l&rsquo;anneau des polynômes</li>
-<li>Polynôme dérivé et formule de Taylor</li>
-<li>Notion de racine d&rsquo;un polynôme</li>
-<li>Notion de Fraction rationelle á une indéterminée</li>
-<li>Décomposition des fractions rationelles en éléments simples</li>
+<li>Notion du polynôme à une indéterminée á coefficients dans un anneau<br /></li>
+<li>Opérations Algébriques sur les polynômes<br /></li>
+<li>Arithmétique dans l&rsquo;anneau des polynômes<br /></li>
+<li>Polynôme dérivé et formule de Taylor<br /></li>
+<li>Notion de racine d&rsquo;un polynôme<br /></li>
+<li>Notion de Fraction rationelle á une indéterminée<br /></li>
+<li>Décomposition des fractions rationelles en éléments simples<br /></li>
 </ul>
 </div>
 </div>
 </div>
-<div id="outline-container-org7db21e0" class="outline-2">
-<h2 id="org7db21e0">Premier cours : Logique mathématique et méthodes du raisonnement mathématique <i>Sep 25</i> :</h2>
-<div class="outline-text-2" id="text-org7db21e0">
+<div id="outline-container-org8356dfb" class="outline-2">
+<h2 id="org8356dfb">Premier cours : Logique mathématique et méthodes du raisonnement mathématique <i>Sep 25</i> :</h2>
+<div class="outline-text-2" id="text-org8356dfb">
 <p>
-Let <b>P</b> <b>Q</b> and <b>R</b> be propositions which can either be <b>True</b> or <b>False</b>. And let&rsquo;s also give the value <b>1</b> to each <b>True</b> proposition and <b>0</b> to each false one.
+Let <b>P</b> <b>Q</b> and <b>R</b> be propositions which can either be <b>True</b> or <b>False</b>. And let&rsquo;s also give the value <b>1</b> to each <b>True</b> proposition and <b>0</b> to each false one.<br />
 </p>
 
 <p>
-<i>Ex:</i>
+<i>Ex:</i><br />
 </p>
 <ul class="org-ul">
-<li><b>5 ≥ 2</b> is a proposition, a correct one !!!</li>
-<li><b>The webmaster is a girl</b> is also a proposition, which is also correct.</li>
-<li><b>x is always bigger than 5</b> is <b>not</b> a proposition, because we CAN&rsquo;T determine if it&rsquo;s correct or not as <b>x</b> changes.</li>
+<li><b>5 ≥ 2</b> is a proposition, a correct one !!!<br /></li>
+<li><b>The webmaster is a girl</b> is also a proposition, which is also correct.<br /></li>
+<li><b>x is always bigger than 5</b> is <b>not</b> a proposition, because we CAN&rsquo;T determine if it&rsquo;s correct or not as <b>x</b> changes.<br /></li>
 </ul>
 <p>
-&#x2026;etc
+&#x2026;etc<br />
 </p>
 
 <p>
-In order to avoid repetition, and rewriting the proposition over and over, we just assign a capital letter to them such as <b>P Q</b> or <b>R</b>.
+In order to avoid repetition, and rewriting the proposition over and over, we just assign a capital letter to them such as <b>P Q</b> or <b>R</b>.<br />
 </p>
 
 <p>
-So now we could write :
-<b>Let the proposition P be 5 ≥ 2, we notice that P is always True, therefor its validity is 1</b>
+So now we could write :<br />
+<b>Let the proposition P be 5 ≥ 2, we notice that P is always True, therefor its validity is 1</b><br />
 </p>
 
 <p>
-We also have the opposite of <b>P</b>, which is <b>not(P)</b> but for simplicity we use <b>P̅</b> (A P with a bar on top, in case it doesn&rsquo;t load for you), now let&rsquo;s go back to the previous example:
+We also have the opposite of <b>P</b>, which is <b>not(P)</b> but for simplicity we use <b>P̅</b> (A P with a bar on top, in case it doesn&rsquo;t load for you), now let&rsquo;s go back to the previous example:<br />
 </p>
 
 <p>
-<b>Since we know that the proposition P is true, we can conclude that P̅ is false. As P and P̅ can NOT be true at the same time. It&rsquo;s like saying 5 is greater and also lesser than 2&#x2026;doesn&rsquo;t make sense, does it ?</b>
+<b>Since we know that the proposition P is true, we can conclude that P̅ is false. As P and P̅ can NOT be true at the same time. It&rsquo;s like saying 5 is greater and also lesser than 2&#x2026;doesn&rsquo;t make sense, does it ?</b><br />
 </p>
 
 <p>
-Now let&rsquo;s say we have two propositions, and we want to test the validity of their disjunction&#x2026;.. Okay what is this &ldquo;disjunction&rdquo; ? <b>Great Question Billy !!!</b> A disjunction is true if either propositions are true
+Now let&rsquo;s say we have two propositions, and we want to test the validity of their disjunction&#x2026;.. Okay what is this &ldquo;disjunction&rdquo; ? <b>Great Question Billy !!!</b> A disjunction is true if either propositions are true<br />
 </p>
 
 <p>
-Ex:
-<b>Let proposition P be &ldquo;The webmaster is asleep&rdquo;, and Q be &ldquo;The reader loves pufferfishes&rdquo;. The disjunction of these two propositions can have 4 different values showed in this Table of truth (such a badass name):</b>
+Ex:<br />
+<b>Let proposition P be &ldquo;The webmaster is asleep&rdquo;, and Q be &ldquo;The reader loves pufferfishes&rdquo;. The disjunction of these two propositions can have 4 different values showed in this Table of truth (such a badass name):</b><br />
 </p>
 
 <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
@@ -176,23 +285,23 @@ Ex:
 </table>
 
 <p>
-<i>What the hell is this ?</i>
-The first colomn is equivalent to saying : &ldquo;The webmaster is asleep AND The reader loves pufferfishes&rdquo;
-The second one means : &ldquo;The webmaster is asleep AND The reader DOESN&rsquo;T love pufferfishes (if you are in this case, then <b>I HATE YOU</b>)&rdquo;
-The third one&#x2026; <i>zzzzzzz</i>
+<i>What the hell is this ?</i><br />
+The first colomn is equivalent to saying : &ldquo;The webmaster is asleep AND The reader loves pufferfishes&rdquo;<br />
+The second one means : &ldquo;The webmaster is asleep AND The reader DOESN&rsquo;T love pufferfishes (if you are in this case, then <b>I HATE YOU</b>)&rdquo;<br />
+The third one&#x2026; <i>zzzzzzz</i><br />
 </p>
 
 <p>
-You got the idea !!!
-And since we are talking about a disjunction here, <b>one of the propositions</b> need to be true in order for this disjunction to be true.
+You got the idea !!!<br />
+And since we are talking about a disjunction here, <b>one of the propositions</b> need to be true in order for this disjunction to be true.<br />
 </p>
 
 <p>
-You may be wondering&#x2026;. Crystal, can&rsquo;t we write a disjunction in magical math symbols ? And to this I respond with a big <b>YES</b>. A disjunction is symbolized by a <b>∨</b> . So the disjunction between proposition <b>P &amp; Q</b> can be written this way : <b>P ∨ Q</b>
+You may be wondering&#x2026;. Crystal, can&rsquo;t we write a disjunction in magical math symbols ? And to this I respond with a big <b>YES</b>. A disjunction is symbolized by a <b>∨</b> . So the disjunction between proposition <b>P &amp; Q</b> can be written this way : <b>P ∨ Q</b><br />
 </p>
 
 <p>
-What if, we want to test whether or not two propositions are true AT THE SAME TIME ? Long story short, we can, it&rsquo;s called a conjunction, same concept, as before, only this time the symbol is <b>P ∧ Q</b>, and is only true if <b>P</b> and <b>Q</b> are true. So we get a Table like this :
+What if, we want to test whether or not two propositions are true AT THE SAME TIME ? Long story short, we can, it&rsquo;s called a conjunction, same concept, as before, only this time the symbol is <b>P ∧ Q</b>, and is only true if <b>P</b> and <b>Q</b> are true. So we get a Table like this :<br />
 </p>
 
 <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
@@ -247,28 +356,28 @@ What if, we want to test whether or not two propositions are true AT THE SAME TI
 </table>
 
 <p>
-<b>Always remember: 1 means true and 0 means false</b>
+<b>Always remember: 1 means true and 0 means false</b><br />
 </p>
 
 <p>
-There are two more basics to cover here before going to some properties, the first one is implication symbolized by the double arrow <b>⇒</b>
+There are two more basics to cover here before going to some properties, the first one is implication symbolized by the double arrow <b>⇒</b><br />
 </p>
 
 <p>
-Implication is kinda hard for my little brain to explain, so I will just say what it means:
+Implication is kinda hard for my little brain to explain, so I will just say what it means:<br />
 </p>
 
 <p>
-<b>If P implies Q, this means that either Q, or the opposite of P are correct</b>
+<b>If P implies Q, this means that either Q, or the opposite of P are correct</b><br />
 </p>
 
 <p>
-or in math terms
+or in math terms<br />
 </p>
 
 <p>
-<b>P ⇒ Q translates to P̅ ∨ Q</b>
-Let&rsquo;s illustrate :
+<b>P ⇒ Q translates to P̅ ∨ Q</b><br />
+Let&rsquo;s illustrate :<br />
 </p>
 
 <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
@@ -344,15 +453,15 @@ Let&rsquo;s illustrate :
 </table>
 
 <p>
-<b>If you look clearly, there is only one case where an implication is false. therefor you just need to find it, and blindly say that the others are correct. A rule of thumb is that: &ldquo;A correct never implies a false&rdquo;, or  &ldquo;If a 1 tries to imply a 0, the implication is a 0&rdquo;</b>
+<b>If you look clearly, there is only one case where an implication is false. therefor you just need to find it, and blindly say that the others are correct. A rule of thumb is that: &ldquo;A correct never implies a false&rdquo;, or  &ldquo;If a 1 tries to imply a 0, the implication is a 0&rdquo;</b><br />
 </p>
 
 <p>
-Aight, a last one and we are done!!! Equivalence, which is fairly easy, symbolized by a <b>⇔</b> symbol.
+Aight, a last one and we are done!!! Equivalence, which is fairly easy, symbolized by a <b>⇔</b> symbol.<br />
 </p>
 
 <p>
-A proposition is equivalent to another only when both of them have <b>the same value of truth</b> AKA: both true or both false. a little table will help demonstrate what i mean.
+A proposition is equivalent to another only when both of them have <b>the same value of truth</b> AKA: both true or both false. a little table will help demonstrate what i mean.<br />
 </p>
 
 <table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
@@ -435,332 +544,332 @@ A proposition is equivalent to another only when both of them have <b>the same v
 </table>
 
 <p>
-<i>Note: P implying Q is equivalent to P̅ implying Q̅, or: (P ⇒ Q) ⇔ (P̅ ⇒ Q̅)</i>
+<i>Note: P implying Q is equivalent to P̅ implying Q̅, or: (P ⇒ Q) ⇔ (P̅ ⇒ Q̅)</i><br />
 </p>
 </div>
-<div id="outline-container-org5604636" class="outline-3">
-<h3 id="org5604636">Properties:</h3>
-<div class="outline-text-3" id="text-org5604636">
+<div id="outline-container-org4521340" class="outline-3">
+<h3 id="org4521340">Properties:</h3>
+<div class="outline-text-3" id="text-org4521340">
 </div>
-<div id="outline-container-orgfffc23d" class="outline-4">
-<h4 id="orgfffc23d"><b>Absorption</b>:</h4>
-<div class="outline-text-4" id="text-orgfffc23d">
+<div id="outline-container-org84e1ec3" class="outline-4">
+<h4 id="org84e1ec3"><b>Absorption</b>:</h4>
+<div class="outline-text-4" id="text-org84e1ec3">
 <p>
-(P ∨ P) ⇔ P
+(P ∨ P) ⇔ P<br />
 </p>
 
 <p>
-(P ∧ P) ⇔ P
+(P ∧ P) ⇔ P<br />
 </p>
 </div>
 </div>
-<div id="outline-container-orgd43aeb7" class="outline-4">
-<h4 id="orgd43aeb7"><b>Commutativity</b>:</h4>
-<div class="outline-text-4" id="text-orgd43aeb7">
+<div id="outline-container-org2345992" class="outline-4">
+<h4 id="org2345992"><b>Commutativity</b>:</h4>
+<div class="outline-text-4" id="text-org2345992">
 <p>
-(P ∧ Q) ⇔ (Q ∧ P)
+(P ∧ Q) ⇔ (Q ∧ P)<br />
 </p>
 
 <p>
-(P ∨ Q) ⇔ (Q ∨ P)
+(P ∨ Q) ⇔ (Q ∨ P)<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org9e5868e" class="outline-4">
-<h4 id="org9e5868e"><b>Associativity</b>:</h4>
-<div class="outline-text-4" id="text-org9e5868e">
+<div id="outline-container-orgfee557e" class="outline-4">
+<h4 id="orgfee557e"><b>Associativity</b>:</h4>
+<div class="outline-text-4" id="text-orgfee557e">
 <p>
-P ∧ (Q ∧ R) ⇔ (P ∧ Q) ∧ R
+P ∧ (Q ∧ R) ⇔ (P ∧ Q) ∧ R<br />
 </p>
 
 <p>
-P ∨ (Q ∨ R) ⇔ (P ∨ Q) ∨ R
+P ∨ (Q ∨ R) ⇔ (P ∨ Q) ∨ R<br />
 </p>
 </div>
 </div>
-<div id="outline-container-orga530d13" class="outline-4">
-<h4 id="orga530d13"><b>Distributivity</b>:</h4>
-<div class="outline-text-4" id="text-orga530d13">
+<div id="outline-container-orgb55cfb2" class="outline-4">
+<h4 id="orgb55cfb2"><b>Distributivity</b>:</h4>
+<div class="outline-text-4" id="text-orgb55cfb2">
 <p>
-P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R)
+P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R)<br />
 </p>
 
 <p>
-P ∨ (Q ∧ R) ⇔ (P ∨ Q) ∧ (P ∨ R)
+P ∨ (Q ∧ R) ⇔ (P ∨ Q) ∧ (P ∨ R)<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org7d55048" class="outline-4">
-<h4 id="org7d55048"><b>Neutral element</b>:</h4>
-<div class="outline-text-4" id="text-org7d55048">
+<div id="outline-container-orgb0de2bb" class="outline-4">
+<h4 id="orgb0de2bb"><b>Neutral element</b>:</h4>
+<div class="outline-text-4" id="text-orgb0de2bb">
 <p>
-<i>We define proposition <b>T</b> to be always <b>true</b> and <b>F</b> to be always <b>false</b></i>
+<i>We define proposition <b>T</b> to be always <b>true</b> and <b>F</b> to be always <b>false</b></i><br />
 </p>
 
 <p>
-P ∧ T ⇔ P
+P ∧ T ⇔ P<br />
 </p>
 
 <p>
-P ∨ F ⇔ P
+P ∨ F ⇔ P<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org7422610" class="outline-4">
-<h4 id="org7422610"><b>Negation of a conjunction &amp; a disjunction</b>:</h4>
-<div class="outline-text-4" id="text-org7422610">
+<div id="outline-container-orgb51e625" class="outline-4">
+<h4 id="orgb51e625"><b>Negation of a conjunction &amp; a disjunction</b>:</h4>
+<div class="outline-text-4" id="text-orgb51e625">
 <p>
-Now we won&rsquo;t use bars here because my lazy ass doesn&rsquo;t know how, so instead I will use not()!!!
+Now we won&rsquo;t use bars here because my lazy ass doesn&rsquo;t know how, so instead I will use not()!!!<br />
 </p>
 
 <p>
-not(<b>P ∧ Q</b>) ⇔ P̅ ∨ Q̅
+not(<b>P ∧ Q</b>) ⇔ P̅ ∨ Q̅<br />
 </p>
 
 <p>
-not(<b>P ∨ Q</b>) ⇔ P̅ ∧ Q̅
+not(<b>P ∨ Q</b>) ⇔ P̅ ∧ Q̅<br />
 </p>
 
 <p>
-<b>A rule I really like to use here is: Break and Invert. Basically you break the bar into the three characters of the propositions, so you get not(P) not(∧ or ∨) <i>NOT AN ACTUAL MATH WRITING. DONT USE IT ANYWHERE ELSE OTHER THAN YOUR BRAIN</i> and not(Q)</b>
+<b>A rule I really like to use here is: Break and Invert. Basically you break the bar into the three characters of the propositions, so you get not(P) not(∧ or ∨) <i>NOT AN ACTUAL MATH WRITING. DONT USE IT ANYWHERE ELSE OTHER THAN YOUR BRAIN</i> and not(Q)</b><br />
 </p>
 </div>
 </div>
-<div id="outline-container-org4145760" class="outline-4">
-<h4 id="org4145760"><b>Transitivity</b>:</h4>
-<div class="outline-text-4" id="text-org4145760">
+<div id="outline-container-org4e29124" class="outline-4">
+<h4 id="org4e29124"><b>Transitivity</b>:</h4>
+<div class="outline-text-4" id="text-org4e29124">
 <p>
-[(P ⇒ Q) AND (Q ⇒ R)] ⇔ P ⇒ R
+[(P ⇒ Q) AND (Q ⇒ R)] ⇔ P ⇒ R<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org245af1d" class="outline-4">
-<h4 id="org245af1d"><b>Contraposition</b>:</h4>
-<div class="outline-text-4" id="text-org245af1d">
+<div id="outline-container-org520b7b0" class="outline-4">
+<h4 id="org520b7b0"><b>Contraposition</b>:</h4>
+<div class="outline-text-4" id="text-org520b7b0">
 <p>
-(P ⇒ Q) ⇔ (Q̅ ⇒ P̅)
+(P ⇒ Q) ⇔ (Q̅ ⇒ P̅)<br />
 </p>
 </div>
 </div>
-<div id="outline-container-orga47b617" class="outline-4">
-<h4 id="orga47b617">God only knows what this property is called:</h4>
-<div class="outline-text-4" id="text-orga47b617">
+<div id="outline-container-org8159635" class="outline-4">
+<h4 id="org8159635">God only knows what this property is called:</h4>
+<div class="outline-text-4" id="text-org8159635">
 <p>
-<i>If</i>
+<i>If</i><br />
 </p>
 
 <p>
-(P ⇒ Q) is true
+(P ⇒ Q) is true<br />
 </p>
 
 <p>
-and
+and<br />
 </p>
 
 <p>
-(P̅ ⇒ Q) is true
+(P̅ ⇒ Q) is true<br />
 </p>
 
 <p>
-then
+then<br />
 </p>
 
 <p>
-Q is always true
+Q is always true<br />
 </p>
 </div>
 </div>
 </div>
-<div id="outline-container-org3cfbd88" class="outline-3">
-<h3 id="org3cfbd88">Some exercices I found online :</h3>
-<div class="outline-text-3" id="text-org3cfbd88">
+<div id="outline-container-org4210e18" class="outline-3">
+<h3 id="org4210e18">Some exercices I found online :</h3>
+<div class="outline-text-3" id="text-org4210e18">
 </div>
-<div id="outline-container-orge60008b" class="outline-4">
-<h4 id="orge60008b">USTHB 2022/2023 Section B :</h4>
-<div class="outline-text-4" id="text-orge60008b">
+<div id="outline-container-org46d1ee6" class="outline-4">
+<h4 id="org46d1ee6">USTHB 2022/2023 Section B :</h4>
+<div class="outline-text-4" id="text-org46d1ee6">
 </div>
 <ul class="org-ul">
-<li><a id="orgd7d6ce9"></a>Exercice 1: Démontrer les équivalences suivantes:<br />
-<div class="outline-text-5" id="text-orgd7d6ce9">
+<li><a id="orga6d3248"></a>Exercice 1: Démontrer les équivalences suivantes:<br />
+<div class="outline-text-5" id="text-orga6d3248">
 <ol class="org-ol">
 <li><p>
-(P ⇒ Q) ⇔ (Q̅ ⇒ P̅)
+(P ⇒ Q) ⇔ (Q̅ ⇒ P̅)<br />
 </p>
 
 <p>
-Basically we are asked to prove contraposition, so here we have ( P ⇒ Q ) which is equivalent to P̅ ∨ Q <b>By definition : (P ⇒ Q) ⇔  (P̅ ∨ Q)</b>
+Basically we are asked to prove contraposition, so here we have ( P ⇒ Q ) which is equivalent to P̅ ∨ Q <b>By definition : (P ⇒ Q) ⇔  (P̅ ∨ Q)</b><br />
 </p></li>
 </ol>
 
 
 <p>
-So we end up with : <b>(P̅ ∨ Q) ⇔ (Q̅ ⇒ P̅)</b>, now we just do the same with the second part of the contraposition. <b>(Q̅ ⇒ P̅) ⇔ (Q ∨ P̅)</b> therefor :
+So we end up with : <b>(P̅ ∨ Q) ⇔ (Q̅ ⇒ P̅)</b>, now we just do the same with the second part of the contraposition. <b>(Q̅ ⇒ P̅) ⇔ (Q ∨ P̅)</b> therefor :<br />
 </p>
 
 
 <p>
-<b>(Q ∨ P̅) ⇔ (P̅ ∨ Q)</b>, which is true because of commutativity
+<b>(Q ∨ P̅) ⇔ (P̅ ∨ Q)</b>, which is true because of commutativity<br />
 </p>
 
 <ol class="org-ol">
-<li>not(P ⇒ Q) ⇔  P ∧ Q̅</li>
+<li>not(P ⇒ Q) ⇔  P ∧ Q̅<br /></li>
 </ol>
 
 
 <p>
-Okaaaay so, let&rsquo;s first get rid of the implication, because I don&rsquo;t like it : <b>not(P̅ ∨ Q)</b>
+Okaaaay so, let&rsquo;s first get rid of the implication, because I don&rsquo;t like it : <b>not(P̅ ∨ Q)</b><br />
 </p>
 
 
 <p>
-Now that we got rid of it, we can negate the whole disjunction <b>not(P̅ ∨ Q) ⇔ (P ∧ Q̅)</b>. Which is the equivalence we needed to prove
+Now that we got rid of it, we can negate the whole disjunction <b>not(P̅ ∨ Q) ⇔ (P ∧ Q̅)</b>. Which is the equivalence we needed to prove<br />
 </p>
 
 <ol class="org-ol">
 <li><p>
-P ⇒ (Q ∧ R) ⇔ (P ⇒ Q) ∧ (P ⇒ R)
+P ⇒ (Q ∧ R) ⇔ (P ⇒ Q) ∧ (P ⇒ R)<br />
 </p>
 
 <p>
-One might be tempted to replace P with P̅ to get rid of the implication&#x2026;sadly this isnt it. All we have to do here is resort to <b>Distributivity</b>, because yeah, we can distribute an implication across a {con/dis}junction
+One might be tempted to replace P with P̅ to get rid of the implication&#x2026;sadly this isnt it. All we have to do here is resort to <b>Distributivity</b>, because yeah, we can distribute an implication across a {con/dis}junction<br />
 </p></li>
 
 <li><p>
-P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R)
+P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R)<br />
 </p>
 
 <p>
-Literally the same as above 🩷
+Literally the same as above 🩷<br />
 </p></li>
 </ol>
 </div>
 </li>
-<li><a id="orgd64e49a"></a>Exercice 2: Dire si les propositions suivantes sont vraies ou fausses, et les nier:<br />
-<div class="outline-text-5" id="text-orgd64e49a">
+<li><a id="orgb4b0c43"></a>Exercice 2: Dire si les propositions suivantes sont vraies ou fausses, et les nier:<br />
+<div class="outline-text-5" id="text-orgb4b0c43">
 <ol class="org-ol">
 <li><p>
-∀x ∈ ℝ ,∃y ∈ ℝ*+, tels que e^x = y
+∀x ∈ ℝ ,∃y ∈ ℝ*+, tels que e^x = y<br />
 </p>
 
 <p>
-For each x from the set of Real numbers, there exists a number y from the set of non-zero positive Real numbers that satisfies the equation : e^x = y
+For each x from the set of Real numbers, there exists a number y from the set of non-zero positive Real numbers that satisfies the equation : e^x = y<br />
 </p></li>
 </ol>
 
 
 <p>
-&ldquo;The function f(x)=e^x is always positive and non-null&rdquo;, the very definition of an exponential function !!!!
+&ldquo;The function f(x)=e^x is always positive and non-null&rdquo;, the very definition of an exponential function !!!!<br />
 </p>
 
 
 <p>
-<b>So the proposition is true</b>
+<b>So the proposition is true</b><br />
 </p>
 
 
 <ol class="org-ol">
-<li>∃x ∈ ℝ, tels que x^2 &lt; x &lt; x^3</li>
+<li>∃x ∈ ℝ, tels que x^2 &lt; x &lt; x^3<br /></li>
 </ol>
 
 
 <p>
-We just need to find a value that satisifies this condition&#x2026;thankfully its easy&#x2026;.
+We just need to find a value that satisifies this condition&#x2026;thankfully its easy&#x2026;.<br />
 </p>
 
 <p>
-x² &lt; x &lt; x³ , we divide the three terms by x so we get :
+x² &lt; x &lt; x³ , we divide the three terms by x so we get :<br />
 </p>
 
 
 <p>
-x &lt; 1 &lt; x² , or :
+x &lt; 1 &lt; x² , or :<br />
 </p>
 
 
 <p>
-<b>x &lt; 1</b> ; <b>1 &lt; x²</b> ⇔  <b>x &lt; 1</b> ; <b>1 &lt; x</b> <i>We square root both sides</i>
+<b>x &lt; 1</b> ; <b>1 &lt; x²</b> ⇔  <b>x &lt; 1</b> ; <b>1 &lt; x</b> <i>We square root both sides</i><br />
 </p>
 
 
 <p>
-We end up with a contradiction, therefor its wrong
+We end up with a contradiction, therefor its wrong<br />
 </p>
 
 
 <ol class="org-ol">
-<li>∀x ∈ ℝ, ∃y ∈ ℝ tels que y = 3x - 8</li>
+<li>∀x ∈ ℝ, ∃y ∈ ℝ tels que y = 3x - 8<br /></li>
 </ol>
 
 
 <p>
-I dont really understand this one, so let me translate it &ldquo;For any value of x from the set of Real numbers, 3x - 8 is a Real number&rdquo;&#x2026;. i mean&#x2026;.yeah, we are substracting a Real number from an other real number&#x2026;
+I dont really understand this one, so let me translate it &ldquo;For any value of x from the set of Real numbers, 3x - 8 is a Real number&rdquo;&#x2026;. i mean&#x2026;.yeah, we are substracting a Real number from an other real number&#x2026;<br />
 </p>
 
 <p>
-<b>Since substraction is an  Internal composition law in ℝ, therefor all results of a substraction between two Real numbers is&#x2026;Real</b>
+<b>Since substraction is an  Internal composition law in ℝ, therefor all results of a substraction between two Real numbers is&#x2026;Real</b><br />
 </p>
 
 <ol class="org-ol">
 <li><p>
-∃x ∈ ℕ, ∀y ∈ ℕ, x &gt; y ⇒ x + y &lt; 8
+∃x ∈ ℕ, ∀y ∈ ℕ, x &gt; y ⇒ x + y &lt; 8<br />
 </p>
 
 <p>
-&ldquo;There exists a number x from the set of Natural numbers such as for all values of y from the set of Natural numbers, x &gt; y implies x + y &lt; 8&rdquo;
+&ldquo;There exists a number x from the set of Natural numbers such as for all values of y from the set of Natural numbers, x &gt; y implies x + y &lt; 8&rdquo;<br />
 </p></li>
 </ol>
 
 
 <p>
-Let&rsquo;s get rid of the implication :
+Let&rsquo;s get rid of the implication :<br />
 </p>
 
 <p>
-∃x ∈ ℕ, ∀y ∈ ℕ, (y &gt; x) ∨ (x + y &lt; 8) <i>There exists a number x from the set of Natural numbers such as for all values of y from the set of Natural numbers y &gt; x OR x + y &lt; 8</i>
+∃x ∈ ℕ, ∀y ∈ ℕ, (y &gt; x) ∨ (x + y &lt; 8) <i>There exists a number x from the set of Natural numbers such as for all values of y from the set of Natural numbers y &gt; x OR x + y &lt; 8</i><br />
 </p>
 
 <p>
-This proposition is true, because there exists a value of x that satisfies this condition, it&rsquo;s <b>all numbers under 8</b> let&rsquo;s take 3 as an example:
+This proposition is true, because there exists a value of x that satisfies this condition, it&rsquo;s <b>all numbers under 8</b> let&rsquo;s take 3 as an example:<br />
 </p>
 
 
 <p>
-<b>x = 3 , if y &gt; 3 then the first condition is true ; if y &lt; 3 then the second one is true</b>
+<b>x = 3 , if y &gt; 3 then the first condition is true ; if y &lt; 3 then the second one is true</b><br />
 </p>
 
 
 <p>
-Meaning that the two propositions CAN NOT BE WRONG TOGETHER, either one is wrong, or the other
+Meaning that the two propositions CAN NOT BE WRONG TOGETHER, either one is wrong, or the other<br />
 </p>
 
 
 <p>
-y &gt; x
+y &gt; x<br />
 </p>
 
 
 <p>
-<b>y - x &gt; 0</b>
+<b>y - x &gt; 0</b><br />
 </p>
 
 
 <p>
-y + x &lt; 8
+y + x &lt; 8<br />
 </p>
 
 
 <p>
-<b>y &lt; 8 - x</b> <i>This one is always true for all values of x below 8, since we are working in the set ℕ</i>
+<b>y &lt; 8 - x</b> <i>This one is always true for all values of x below 8, since we are working in the set ℕ</i><br />
 </p>
 
 
 <ol class="org-ol">
 <li><p>
-∀x ∈ ℝ, x² ≥ 1 ⇔  x ≥ 1
+∀x ∈ ℝ, x² ≥ 1 ⇔  x ≥ 1<br />
 </p>
 
 <p>
-&#x2026;.This is getting stupid. of course it&rsquo;s true it&rsquo;s part of the definition of the power of 2
+&#x2026;.This is getting stupid. of course it&rsquo;s true it&rsquo;s part of the definition of the power of 2<br />
 </p></li>
 </ol>
 </div>
@@ -769,684 +878,745 @@ y + x &lt; 8
 </div>
 </div>
 </div>
-<div id="outline-container-org980d3be" class="outline-2">
-<h2 id="org980d3be">2éme cours <i>Oct 2</i></h2>
-<div class="outline-text-2" id="text-org980d3be">
+<div id="outline-container-org732b9dd" class="outline-2">
+<h2 id="org732b9dd">2éme cours <i>Oct 2</i></h2>
+<div class="outline-text-2" id="text-org732b9dd">
 </div>
-<div id="outline-container-org22b148b" class="outline-3">
-<h3 id="org22b148b">Quantifiers</h3>
-<div class="outline-text-3" id="text-org22b148b">
+<div id="outline-container-orgdfba00a" class="outline-3">
+<h3 id="orgdfba00a">Quantifiers</h3>
+<div class="outline-text-3" id="text-orgdfba00a">
 <p>
-A propriety P can depend on a parameter x
+A propriety P can depend on a parameter x<br />
 </p>
 
 
 <p>
-∀ is the universal quantifier which stands for &ldquo;For any value of&#x2026;&rdquo;
+∀ is the universal quantifier which stands for &ldquo;For any value of&#x2026;&rdquo;<br />
 </p>
 
 
 <p>
-∃ is the existential quantifier which stands for &ldquo;There exists at least one&#x2026;&rdquo;
+∃ is the existential quantifier which stands for &ldquo;There exists at least one&#x2026;&rdquo;<br />
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="org4afa1df"></a>Example<br />
-<div class="outline-text-6" id="text-org4afa1df">
+<li><a id="org9a107f8"></a>Example<br />
+<div class="outline-text-6" id="text-org9a107f8">
 <p>
-P(x) : x+1≥0
+P(x) : x+1≥0<br />
 </p>
 
 <p>
-P(X) is True or False depending on the values of x
+P(X) is True or False depending on the values of x<br />
 </p>
 </div>
 </li>
 </ul>
-<div id="outline-container-org8b437f3" class="outline-4">
-<h4 id="org8b437f3">Proprieties</h4>
-<div class="outline-text-4" id="text-org8b437f3">
+<div id="outline-container-org93d5891" class="outline-4">
+<h4 id="org93d5891">Proprieties</h4>
+<div class="outline-text-4" id="text-org93d5891">
 </div>
 <ul class="org-ul">
-<li><a id="org6d0c06f"></a>Propriety Number 1:<br />
-<div class="outline-text-5" id="text-org6d0c06f">
+<li><a id="orgcc6c2bd"></a>Propriety Number 1:<br />
+<div class="outline-text-5" id="text-orgcc6c2bd">
 <p>
-The negation of the universal quantifier is the existential quantifier, and vice-versa :
+The negation of the universal quantifier is the existential quantifier, and vice-versa :<br />
 </p>
 
 <ul class="org-ul">
-<li>not(∀x ∈ E , P(x)) ⇔ ∃ x ∈ E, not(P(x))</li>
-<li>not(∃x ∈ E , P(x)) ⇔ ∀ x ∈ E, not(P(x))</li>
+<li>not(∀x ∈ E , P(x)) ⇔ ∃ x ∈ E, not(P(x))<br /></li>
+<li>not(∃x ∈ E , P(x)) ⇔ ∀ x ∈ E, not(P(x))<br /></li>
 </ul>
 </div>
 <ul class="org-ul">
-<li><a id="orgd242e81"></a>Example:<br />
-<div class="outline-text-6" id="text-orgd242e81">
+<li><a id="org4d384a3"></a>Example:<br />
+<div class="outline-text-6" id="text-org4d384a3">
 <p>
-∀ x ≥ 1  x² &gt; 5 ⇔ ∃ x ≥ 1 x² &lt; 5
+∀ x ≥ 1  x² &gt; 5 ⇔ ∃ x ≥ 1 x² &lt; 5<br />
 </p>
 </div>
 </li>
 </ul>
 </li>
-<li><a id="orgd7c2c1d"></a>Propriety Number 2:<br />
-<div class="outline-text-5" id="text-orgd7c2c1d">
+<li><a id="org372a28e"></a>Propriety Number 2:<br />
+<div class="outline-text-5" id="text-org372a28e">
 <p>
-<b>∀x ∈ E, [P(x) ∧ Q(x)] ⇔ [∀ x ∈ E, P(x)] ∧ [∀ x ∈ E, Q(x)]</b>
+<b>∀x ∈ E, [P(x) ∧ Q(x)] ⇔ [∀ x ∈ E, P(x)] ∧ [∀ x ∈ E, Q(x)]</b><br />
 </p>
 
 
 <p>
-The propriety &ldquo;For any value of x from a set E , P(x) and Q(x)&rdquo; is equivalent to &ldquo;For any value of x from a set E, P(x) AND for any value of x from a set E, Q(x)&rdquo;
+The propriety &ldquo;For any value of x from a set E , P(x) and Q(x)&rdquo; is equivalent to &ldquo;For any value of x from a set E, P(x) AND for any value of x from a set E, Q(x)&rdquo;<br />
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="org5cb6921"></a>Example :<br />
-<div class="outline-text-6" id="text-org5cb6921">
+<li><a id="org7649498"></a>Example :<br />
+<div class="outline-text-6" id="text-org7649498">
 <p>
-P(x) : sqrt(x) &gt; 0 ;  Q(x) : x ≥ 1
+P(x) : sqrt(x) &gt; 0 ;  Q(x) : x ≥ 1<br />
 </p>
 
 
 <p>
-∀x ∈ ℝ*+, [sqrt(x) &gt; 0 , x ≥ 1] ⇔ [∀x ∈ R*+, sqrt(x) &gt; 0] ∧ [∀x ∈ R*+, x ≥ 1]
+∀x ∈ ℝ*+, [sqrt(x) &gt; 0 , x ≥ 1] ⇔ [∀x ∈ R*+, sqrt(x) &gt; 0] ∧ [∀x ∈ R*+, x ≥ 1]<br />
 </p>
 
 
 <p>
-<b>Which is true</b>
+<b>Which is true</b><br />
 </p>
 </div>
 </li>
 </ul>
 </li>
-<li><a id="orgd56cb14"></a>Propriety Number 3:<br />
-<div class="outline-text-5" id="text-orgd56cb14">
+<li><a id="orgbccb33f"></a>Propriety Number 3:<br />
+<div class="outline-text-5" id="text-orgbccb33f">
 <p>
-<b>∃ x ∈ E, [P(x) ∧ Q(x)] <i>⇒</i> [∃ x ∈ E, P(x)] ∧ [∃ x ∈ E, Q(x)]</b>
+<b>∃ x ∈ E, [P(x) ∧ Q(x)] <i>⇒</i> [∃ x ∈ E, P(x)] ∧ [∃ x ∈ E, Q(x)]</b><br />
 </p>
 
 
 <p>
-<i>Here its an implication and not an equivalence</i>
+<i>Here its an implication and not an equivalence</i><br />
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="org52c3098"></a>Example of why it&rsquo;s NOT an equivalence :<br />
-<div class="outline-text-6" id="text-org52c3098">
+<li><a id="orgf623821"></a>Example of why it&rsquo;s NOT an equivalence :<br />
+<div class="outline-text-6" id="text-orgf623821">
 <p>
-P(x) : x &gt; 5  ;  Q(x) : x &lt; 5
+P(x) : x &gt; 5  ;  Q(x) : x &lt; 5<br />
 </p>
 
 
 <p>
-Of course there is no value of x such as its inferior and superior to 5 at the same time, so obviously the proposition is false. However, the two propositions separated are correct on their own, because there is a value of x such as its superior to 5, and there is also a value of x such as its inferior to 5. This is why it&rsquo;s an implication and NOT AN EQUIVALENCE!!!
+Of course there is no value of x such as its inferior and superior to 5 at the same time, so obviously the proposition is false. However, the two propositions separated are correct on their own, because there is a value of x such as its superior to 5, and there is also a value of x such as its inferior to 5. This is why it&rsquo;s an implication and NOT AN EQUIVALENCE!!!<br />
 </p>
 </div>
 </li>
 </ul>
 </li>
-<li><a id="org9439534"></a>Propriety Number 4:<br />
-<div class="outline-text-5" id="text-org9439534">
+<li><a id="orgda152b2"></a>Propriety Number 4:<br />
+<div class="outline-text-5" id="text-orgda152b2">
 <p>
-<b>[∀ x ∈ E, P(x)] ∨ [∀ x ∈ E, Q(x)] <i>⇒</i> ∀x ∈ E, [P(x) ∨ Q(x)]</b>
+<b>[∀ x ∈ E, P(x)] ∨ [∀ x ∈ E, Q(x)] <i>⇒</i> ∀x ∈ E, [P(x) ∨ Q(x)]</b><br />
 </p>
 
 
 <p>
-<i>Same here, implication and NOT en equivalence</i>
+<i>Same here, implication and NOT en equivalence</i><br />
 </p>
 </div>
 </li>
 </ul>
 </div>
 </div>
-<div id="outline-container-orgcb2ff75" class="outline-3">
-<h3 id="orgcb2ff75">Multi-parameter proprieties :</h3>
-<div class="outline-text-3" id="text-orgcb2ff75">
+<div id="outline-container-orgf21a239" class="outline-3">
+<h3 id="orgf21a239">Multi-parameter proprieties :</h3>
+<div class="outline-text-3" id="text-orgf21a239">
 <p>
-A propriety P can depend on two or more parameters, for convenience we call them x,y,z&#x2026;etc
+A propriety P can depend on two or more parameters, for convenience we call them x,y,z&#x2026;etc<br />
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="org309a152"></a>Example :<br />
-<div class="outline-text-6" id="text-org309a152">
+<li><a id="orgdda5feb"></a>Example :<br />
+<div class="outline-text-6" id="text-orgdda5feb">
 <p>
-P(x,y): x+y &gt; 0
+P(x,y): x+y &gt; 0<br />
 </p>
 
 
 <p>
-P(0,1) is a True proposition
+P(0,1) is a True proposition<br />
 </p>
 
 
 <p>
-P(-2,-1) is a False one
+P(-2,-1) is a False one<br />
 </p>
 </div>
 </li>
-<li><a id="orgfbf5cee"></a>WARNING :<br />
-<div class="outline-text-6" id="text-orgfbf5cee">
+<li><a id="org08d728b"></a>WARNING :<br />
+<div class="outline-text-6" id="text-org08d728b">
 <p>
-∀x ∈ E, ∃y ∈ F , P(x,y)
+∀x ∈ E, ∃y ∈ F , P(x,y)<br />
 </p>
 
 
 <p>
-∃y ∈ F, ∀x ∈ E , P(x,y)
+∃y ∈ F, ∀x ∈ E , P(x,y)<br />
 </p>
 
 
 <p>
-Are different because in the first one y depends on x, while in the second one, it doesn&rsquo;t
+Are different because in the first one y depends on x, while in the second one, it doesn&rsquo;t<br />
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="org21332e2"></a>Example :<br />
-<div class="outline-text-7" id="text-org21332e2">
+<li><a id="org78dcf22"></a>Example :<br />
+<div class="outline-text-7" id="text-org78dcf22">
 <p>
-∀ x ∈ ℕ , ∃ y ∈ ℕ y &gt; x -&#x2013;&#x2014; True
+∀ x ∈ ℕ , ∃ y ∈ ℕ y &gt; x -&#x2013;&#x2014; True<br />
 </p>
 
 
 <p>
-∃ y ∈ ℕ , ∀ x ∈ ℕ y &gt; x -&#x2013;&#x2014; False
+∃ y ∈ ℕ , ∀ x ∈ ℕ y &gt; x -&#x2013;&#x2014; False<br />
 </p>
 </div>
 </li>
 </ul>
 </li>
 </ul>
-<li><a id="org2fad1a6"></a>Proprieties :<br />
-<div class="outline-text-5" id="text-org2fad1a6">
+<li><a id="org088c862"></a>Proprieties :<br />
+<div class="outline-text-5" id="text-org088c862">
 <ol class="org-ol">
-<li>not(∀x ∈ E ,∃y ∈ F P(x,y)) ⇔ ∃x ∈ E, ∀y ∈ F not(P(x,y))</li>
-<li>not(∃x ∈ E ,∀y ∈ F P(x,y)) ⇔ ∀x ∈ E, ∃y ∈ F not(P(x,y))</li>
+<li>not(∀x ∈ E ,∃y ∈ F P(x,y)) ⇔ ∃x ∈ E, ∀y ∈ F not(P(x,y))<br /></li>
+<li>not(∃x ∈ E ,∀y ∈ F P(x,y)) ⇔ ∀x ∈ E, ∃y ∈ F not(P(x,y))<br /></li>
 </ol>
 </div>
 </li>
 </ul>
 </div>
-<div id="outline-container-org405d91a" class="outline-3">
-<h3 id="org405d91a">Methods of mathematical reasoning :</h3>
-<div class="outline-text-3" id="text-org405d91a">
+<div id="outline-container-org779f917" class="outline-3">
+<h3 id="org779f917">Methods of mathematical reasoning :</h3>
+<div class="outline-text-3" id="text-org779f917">
 </div>
-<div id="outline-container-org0e2120a" class="outline-4">
-<h4 id="org0e2120a">Direct reasoning :</h4>
-<div class="outline-text-4" id="text-org0e2120a">
+<div id="outline-container-orgc6832c3" class="outline-4">
+<h4 id="orgc6832c3">Direct reasoning :</h4>
+<div class="outline-text-4" id="text-orgc6832c3">
 <p>
-To show that an implication P ⇒ Q is true, we suppose that P is true and we show that Q is true
+To show that an implication P ⇒ Q is true, we suppose that P is true and we show that Q is true<br />
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="orge655791"></a>Example:<br />
-<div class="outline-text-5" id="text-orge655791">
+<li><a id="org8dbaab8"></a>Example:<br />
+<div class="outline-text-5" id="text-org8dbaab8">
 <p>
-Let a,b be two Real numbers, we have to prove that <b>a² + b² = 1 ⇒ |a + b| ≤ 2</b>
+Let a,b be two Real numbers, we have to prove that <b>a² + b² = 1 ⇒ |a + b| ≤ 2</b><br />
 </p>
 
 
 <p>
-We suppose that a²+b² = 1 and we prove that |a + b| ≤ 2
+We suppose that a²+b² = 1 and we prove that |a + b| ≤ 2<br />
 </p>
 
 
 <p>
-a²+b²=1 ⇒  b² = 1 - a² ; a² = 1 - b²
+a²+b²=1 ⇒  b² = 1 - a² ; a² = 1 - b²<br />
 </p>
 
 
 <p>
-a²+b²=1 ⇒  1 - a² ≥ 0 ; 1 - b² ≥ 0
+a²+b²=1 ⇒  1 - a² ≥ 0 ; 1 - b² ≥ 0<br />
 </p>
 
 
 <p>
-a²+b²=1 ⇒  a² ≤ 1 ; b² ≤ 1
+a²+b²=1 ⇒  a² ≤ 1 ; b² ≤ 1<br />
 </p>
 
 
 <p>
-a²+b²=1 ⇒ -1 ≤ a ≤ 1 ; -1 ≤ b ≤ 1
+a²+b²=1 ⇒ -1 ≤ a ≤ 1 ; -1 ≤ b ≤ 1<br />
 </p>
 
 
 <p>
-a²+b²=1 ⇒ -2 ≤ a + b ≤ 2
+a²+b²=1 ⇒ -2 ≤ a + b ≤ 2<br />
 </p>
 
 
 <p>
-a²+b²=1 ⇒ |a + b| ≤ 2 <b>Which is what we wanted to prove, therefor the implication is correct</b>
+a²+b²=1 ⇒ |a + b| ≤ 2 <b>Which is what we wanted to prove, therefor the implication is correct</b><br />
 </p>
 </div>
 </li>
 </ul>
 </div>
-<div id="outline-container-org3318c18" class="outline-4">
-<h4 id="org3318c18">Reasoning by the Absurd:</h4>
-<div class="outline-text-4" id="text-org3318c18">
+<div id="outline-container-orgf140b16" class="outline-4">
+<h4 id="orgf140b16">Reasoning by the Absurd:</h4>
+<div class="outline-text-4" id="text-orgf140b16">
 <p>
-To prove that a proposition is True, we suppose that it&rsquo;s False and we must come to a contradiction
+To prove that a proposition is True, we suppose that it&rsquo;s False and we must come to a contradiction<br />
 </p>
 
 
 <p>
-And to prove that an implication P ⇒ Q is true using the reasoning by the absurd, we suppose that  P ∧ not(Q) is true, and then we come to a contradiction as well
+And to prove that an implication P ⇒ Q is true using the reasoning by the absurd, we suppose that  P ∧ not(Q) is true, and then we come to a contradiction as well<br />
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="org6217ba8"></a>Example:<br />
-<div class="outline-text-5" id="text-org6217ba8">
+<li><a id="org1fefbfb"></a>Example:<br />
+<div class="outline-text-5" id="text-org1fefbfb">
 <p>
-Prove that this proposition is correct using the reasoning by the absurd : ∀x ∈ ℝ* , sqrt(1+x²) ≠ 1 + x²/2
+Prove that this proposition is correct using the reasoning by the absurd : ∀x ∈ ℝ* , sqrt(1+x²) ≠ 1 + x²/2<br />
 </p>
 
 
 <p>
-We assume that ∃ x ℝ* , sqrt(1+x²) = 1 + x²/2
+We assume that ∃ x ℝ* , sqrt(1+x²) = 1 + x²/2<br />
 </p>
 
 
 <p>
-sqrt(1+x²) = 1 + x²/2 ; 1 + x² = (1+x²/2)² ; 1 + x² = 1 + x^4/4 + x²  ;  x^(4)/4 = 0 &#x2026; Which contradicts with our proposition, since x = 4 and we are working on the ℝ* set
+sqrt(1+x²) = 1 + x²/2 ; 1 + x² = (1+x²/2)² ; 1 + x² = 1 + x^4/4 + x²  ;  x^(4)/4 = 0 &#x2026; Which contradicts with our proposition, since x = 4 and we are working on the ℝ* set<br />
 </p>
 </div>
 </li>
 </ul>
 </div>
-<div id="outline-container-orgdca4b33" class="outline-4">
-<h4 id="orgdca4b33">Reasoning by contraposition:</h4>
-<div class="outline-text-4" id="text-orgdca4b33">
+<div id="outline-container-org320dc57" class="outline-4">
+<h4 id="org320dc57">Reasoning by contraposition:</h4>
+<div class="outline-text-4" id="text-org320dc57">
 <p>
-If an implication P ⇒ Q is too hard to prove, we just have to prove not(Q) ⇒ not(P) is true !!! or in other words that both not(P) and not(Q) are true
+If an implication P ⇒ Q is too hard to prove, we just have to prove not(Q) ⇒ not(P) is true !!! or in other words that both not(P) and not(Q) are true<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org45373bc" class="outline-4">
-<h4 id="org45373bc">Reasoning by counter example:</h4>
-<div class="outline-text-4" id="text-org45373bc">
+<div id="outline-container-org27943b2" class="outline-4">
+<h4 id="org27943b2">Reasoning by counter example:</h4>
+<div class="outline-text-4" id="text-org27943b2">
 <p>
-To prove that a proposition ∀x ∈ E, P(x) is false, all we have to do is find a single value of x from E such as not(P(x)) is true
+To prove that a proposition ∀x ∈ E, P(x) is false, all we have to do is find a single value of x from E such as not(P(x)) is true<br />
 </p>
 </div>
 </div>
 </div>
 </div>
-<div id="outline-container-org1ab01d8" class="outline-2">
-<h2 id="org1ab01d8">3eme Cours : <i>Oct 9</i></h2>
-<div class="outline-text-2" id="text-org1ab01d8">
+<div id="outline-container-orgfddd579" class="outline-2">
+<h2 id="orgfddd579">3eme Cours : <i>Oct 9</i></h2>
+<div class="outline-text-2" id="text-orgfddd579">
 </div>
-<div id="outline-container-orgc3cdd55" class="outline-4">
-<h4 id="orgc3cdd55">Reasoning by recurrence :</h4>
-<div class="outline-text-4" id="text-orgc3cdd55">
+<div id="outline-container-org21eab57" class="outline-4">
+<h4 id="org21eab57">Reasoning by recurrence :</h4>
+<div class="outline-text-4" id="text-org21eab57">
 <p>
-P is a propriety dependent of <b>n ∈ ℕ</b>. If for n0 ∈ ℕ P(n0) is true, and if for n ≥ n0 (P(n) ⇒ P(n+1)) is true. Then P(n) is true for n ≥ n0
+P is a propriety dependent of <b>n ∈ ℕ</b>. If for n0 ∈ ℕ P(n0) is true, and if for n ≥ n0 (P(n) ⇒ P(n+1)) is true. Then P(n) is true for n ≥ n0<br />
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="org74698a3"></a>Example:<br />
-<div class="outline-text-5" id="text-org74698a3">
+<li><a id="org2a3aa46"></a>Example:<br />
+<div class="outline-text-5" id="text-org2a3aa46">
 <p>
-Let&rsquo;s prove that ∀ n ≥ 1 , (n,k=1)Σk = [n(n+1)]/2
+Let&rsquo;s prove that ∀ n ≥ 1 , (n,k=1)Σk = [n(n+1)]/2<br />
 </p>
 
 
 <p>
-P(n) : (n,k=1)Σk = [n(n+1)]/2
+P(n) : (n,k=1)Σk = [n(n+1)]/2<br />
 </p>
 
 
 
 <p>
-<b>Pour n = 1:</b> (1,k=1)Σk = 1 ; [n(n+1)]/2 = 1 . <b>So P(1) is true</b>
+<b>Pour n = 1:</b> (1,k=1)Σk = 1 ; [n(n+1)]/2 = 1 . <b>So P(1) is true</b><br />
 </p>
 
 
 
 <p>
-For n ≥ 1. We assume that P(n) is true, OR : <b>(n, k=1)Σk = n(n+1)/2</b>. We now have to prove that P(n+1) is true, Or : <b>(n+1, k=1)Σk = (n+1)(n+2)/2</b>
+For n ≥ 1. We assume that P(n) is true, OR : <b>(n, k=1)Σk = n(n+1)/2</b>. We now have to prove that P(n+1) is true, Or : <b>(n+1, k=1)Σk = (n+1)(n+2)/2</b><br />
 </p>
 
 
 <p>
-(n+1, k=1)Σk = 1 + 2 + &#x2026;. + n + (n+1) ; (n+1, k=1)Σk = (n, k=1)Σk + (n+1) ; = n(n+1)/2 + (n+1) ; = [n(n+1) + 2(n+1)]/2 ; = <b>[(n+2)(n+1)]/2</b> <i>WHICH IS WHAT WE NEEDED TO FIND</i>
+(n+1, k=1)Σk = 1 + 2 + &#x2026;. + n + (n+1) ; (n+1, k=1)Σk = (n, k=1)Σk + (n+1) ; = n(n+1)/2 + (n+1) ; = [n(n+1) + 2(n+1)]/2 ; = <b>[(n+2)(n+1)]/2</b> <i>WHICH IS WHAT WE NEEDED TO FIND</i><br />
 </p>
 
 
 <p>
-<b>Conclusion: ∀n ≥ 1 , (n,k=1)Σk = n(n+1)/2</b>
+<b>Conclusion: ∀n ≥ 1 , (n,k=1)Σk = n(n+1)/2</b><br />
 </p>
 </div>
 </li>
 </ul>
 </div>
 </div>
-<div id="outline-container-org62bfe2a" class="outline-2">
-<h2 id="org62bfe2a">4eme Cours : Chapitre 2 : Sets and Operations</h2>
-<div class="outline-text-2" id="text-org62bfe2a">
+<div id="outline-container-org155c9a9" class="outline-2">
+<h2 id="org155c9a9">4eme Cours : Chapitre 2 : Sets and Operations</h2>
+<div class="outline-text-2" id="text-org155c9a9">
 </div>
-<div id="outline-container-org5c29bea" class="outline-3">
-<h3 id="org5c29bea">Definition of a set :</h3>
-<div class="outline-text-3" id="text-org5c29bea">
+<div id="outline-container-org5bb0b39" class="outline-3">
+<h3 id="org5bb0b39">Definition of a set :</h3>
+<div class="outline-text-3" id="text-org5bb0b39">
 <p>
-A set is a collection of objects that share the sane propriety
+A set is a collection of objects that share the sane propriety<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org7f4934f" class="outline-3">
-<h3 id="org7f4934f">Belonging, inclusion, and equality :</h3>
-<div class="outline-text-3" id="text-org7f4934f">
+<div id="outline-container-org469078a" class="outline-3">
+<h3 id="org469078a">Belonging, inclusion, and equality :</h3>
+<div class="outline-text-3" id="text-org469078a">
 <ol class="org-ol">
-<li>Let E be a set. If x is an element of E, we say that x belongs to E we write <b>x ∈ E</b>, and if it doesn&rsquo;t, we write <b>x ∉ E</b></li>
-<li>A set E is included in a set F if all elements of E are elements of F and we write <b>E ⊂ F ⇔ (∀x , x ∈ E ⇒ x ∈ F)</b>. We say that E is a subset of F, or a part of F. The negation of this propriety is : <b>E ⊄ F ⇔ ∃x , x ∈ E and x ⊄ F</b></li>
-<li>E and F are equal if E is included in F and F is included in E, and we write <b>E = F ⇔ (E ⊂ F) et (F ⊂ E)</b></li>
-<li>The empty set (symbolized by ∅) is a set without elements, and is included in all sets (by convention) : <b>∅ ⊂ E</b></li>
+<li>Let E be a set. If x is an element of E, we say that x belongs to E we write <b>x ∈ E</b>, and if it doesn&rsquo;t, we write <b>x ∉ E</b><br /></li>
+<li>A set E is included in a set F if all elements of E are elements of F and we write <b>E ⊂ F ⇔ (∀x , x ∈ E ⇒ x ∈ F)</b>. We say that E is a subset of F, or a part of F. The negation of this propriety is : <b>E ⊄ F ⇔ ∃x , x ∈ E and x ⊄ F</b><br /></li>
+<li>E and F are equal if E is included in F and F is included in E, and we write <b>E = F ⇔ (E ⊂ F) et (F ⊂ E)</b><br /></li>
+<li>The empty set (symbolized by ∅) is a set without elements, and is included in all sets (by convention) : <b>∅ ⊂ E</b><br /></li>
 </ol>
 </div>
 </div>
-<div id="outline-container-orgd439312" class="outline-3">
-<h3 id="orgd439312">Intersections and reunions :</h3>
-<div class="outline-text-3" id="text-orgd439312">
+<div id="outline-container-org1461e60" class="outline-3">
+<h3 id="org1461e60">Intersections and reunions :</h3>
+<div class="outline-text-3" id="text-org1461e60">
 </div>
-<div id="outline-container-org2eaf0a6" class="outline-4">
-<h4 id="org2eaf0a6">Intersection:</h4>
-<div class="outline-text-4" id="text-org2eaf0a6">
+<div id="outline-container-orgd9db499" class="outline-4">
+<h4 id="orgd9db499">Intersection:</h4>
+<div class="outline-text-4" id="text-orgd9db499">
 <p>
-E ∩ F = {x / x ∈ E AND x ∈ F} ; x ∈ E ∩ F ⇔ x ∈ F AND x ∈ F
+E ∩ F = {x / x ∈ E AND x ∈ F} ; x ∈ E ∩ F ⇔ x ∈ F AND x ∈ F<br />
 </p>
 
 
 <p>
-x ∉ E ∩ F ⇔ x ∉ E OR x ∉ F
+x ∉ E ∩ F ⇔ x ∉ E OR x ∉ F<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org8bfbedf" class="outline-4">
-<h4 id="org8bfbedf">Union:</h4>
-<div class="outline-text-4" id="text-org8bfbedf">
+<div id="outline-container-org0946751" class="outline-4">
+<h4 id="org0946751">Union:</h4>
+<div class="outline-text-4" id="text-org0946751">
 <p>
-E ∪ F = {x / x ∈ E OR x ∈ F} ;  x ∈ E ∪ F ⇔ x ∈ F OR x ∈ F
+E ∪ F = {x / x ∈ E OR x ∈ F} ;  x ∈ E ∪ F ⇔ x ∈ F OR x ∈ F<br />
 </p>
 
 
 <p>
-x ∉ E ∪ F ⇔ x ∉ E AND x ∉ F
+x ∉ E ∪ F ⇔ x ∉ E AND x ∉ F<br />
 </p>
 </div>
 </div>
-<div id="outline-container-orgf5d7c25" class="outline-4">
-<h4 id="orgf5d7c25">Difference between two sets:</h4>
-<div class="outline-text-4" id="text-orgf5d7c25">
+<div id="outline-container-org8fb5e39" class="outline-4">
+<h4 id="org8fb5e39">Difference between two sets:</h4>
+<div class="outline-text-4" id="text-org8fb5e39">
 <p>
-E\F(Which is also written as : E - F) = {x / x ∈ E and x ∉ F}
+E(Which is also written as : E - F) = {x / x ∈ E and x ∉ F}<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org16f26ee" class="outline-4">
-<h4 id="org16f26ee">Complimentary set:</h4>
-<div class="outline-text-4" id="text-org16f26ee">
+<div id="outline-container-org17ec98b" class="outline-4">
+<h4 id="org17ec98b">Complimentary set:</h4>
+<div class="outline-text-4" id="text-org17ec98b">
 <p>
-If F ⊂ E. E - F is the complimentary of F in E.
+If F ⊂ E. E - F is the complimentary of F in E.<br />
 </p>
 
 
 <p>
-FCE = {x /x ∈ E AND x ∉ F} <b>ONLY WHEN F IS A SUBSET OF E</b>
+FCE = {x /x ∈ E AND x ∉ F} <b>ONLY WHEN F IS A SUBSET OF E</b><br />
 </p>
 </div>
 </div>
-<div id="outline-container-org67da9c0" class="outline-4">
-<h4 id="org67da9c0">Symentrical difference</h4>
-<div class="outline-text-4" id="text-org67da9c0">
+<div id="outline-container-org61d7d25" class="outline-4">
+<h4 id="org61d7d25">Symentrical difference</h4>
+<div class="outline-text-4" id="text-org61d7d25">
 <p>
-E Δ F = (E - F) ∪ (F - E) ; = (E ∪ F) - (E ∩ F)
+E Δ F = (E - F) ∪ (F - E) ; = (E ∪ F) - (E ∩ F)<br />
 </p>
 </div>
 </div>
 </div>
-<div id="outline-container-org10858f6" class="outline-3">
-<h3 id="org10858f6">Proprieties :</h3>
-<div class="outline-text-3" id="text-org10858f6">
+<div id="outline-container-org1e0c21a" class="outline-3">
+<h3 id="org1e0c21a">Proprieties :</h3>
+<div class="outline-text-3" id="text-org1e0c21a">
 <p>
-Let E,F and G be 3 sets. We have :
+Let E,F and G be 3 sets. We have :<br />
 </p>
 </div>
-<div id="outline-container-orgdeeff37" class="outline-4">
-<h4 id="orgdeeff37">Commutativity:</h4>
-<div class="outline-text-4" id="text-orgdeeff37">
+<div id="outline-container-orgaed74b7" class="outline-4">
+<h4 id="orgaed74b7">Commutativity:</h4>
+<div class="outline-text-4" id="text-orgaed74b7">
 <p>
-E ∩ F = F ∩ E
-E ∪ F = F ∪ E
+E ∩ F = F ∩ E<br />
+E ∪ F = F ∪ E<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org6228f00" class="outline-4">
-<h4 id="org6228f00">Associativity:</h4>
-<div class="outline-text-4" id="text-org6228f00">
+<div id="outline-container-org1d74822" class="outline-4">
+<h4 id="org1d74822">Associativity:</h4>
+<div class="outline-text-4" id="text-org1d74822">
 <p>
-E ∩ (F ∩ G) = (E ∩ F) ∩ G
-E ∪ (F ∪ G) = (E ∪ F) ∪ G
+E ∩ (F ∩ G) = (E ∩ F) ∩ G<br />
+E ∪ (F ∪ G) = (E ∪ F) ∪ G<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org2523e0e" class="outline-4">
-<h4 id="org2523e0e">Distributivity:</h4>
-<div class="outline-text-4" id="text-org2523e0e">
+<div id="outline-container-org667f4dd" class="outline-4">
+<h4 id="org667f4dd">Distributivity:</h4>
+<div class="outline-text-4" id="text-org667f4dd">
 <p>
-E ∩ (F ∪ G) = (E ∩ F) ∪ (E ∩ G)
-E ∪ (F ∩ G) = (E ∪ F) ∩ (E ∪ G)
+E ∩ (F ∪ G) = (E ∩ F) ∪ (E ∩ G)<br />
+E ∪ (F ∩ G) = (E ∪ F) ∩ (E ∪ G)<br />
 </p>
 </div>
 </div>
-<div id="outline-container-orgeb0c0a3" class="outline-4">
-<h4 id="orgeb0c0a3">Lois de Morgan:</h4>
-<div class="outline-text-4" id="text-orgeb0c0a3">
+<div id="outline-container-org31c4f57" class="outline-4">
+<h4 id="org31c4f57">Lois de Morgan:</h4>
+<div class="outline-text-4" id="text-org31c4f57">
 <p>
-If E ⊂ G and F ⊂ G ;
+If E ⊂ G and F ⊂ G ;<br />
 </p>
 
 <p>
-(E ∩ F)CG = ECG ∪ FCG ; (E ∪ F)CG = ECG ∩ FCG
+(E ∩ F)CG = ECG ∪ FCG ; (E ∪ F)CG = ECG ∩ FCG<br />
 </p>
 </div>
 </div>
-<div id="outline-container-orge638501" class="outline-4">
-<h4 id="orge638501">An other one:</h4>
-<div class="outline-text-4" id="text-orge638501">
+<div id="outline-container-orgc30ba1d" class="outline-4">
+<h4 id="orgc30ba1d">An other one:</h4>
+<div class="outline-text-4" id="text-orgc30ba1d">
 <p>
-E - (F ∩ G) = (E-F) ∪ (E-G) ;  E - (F ∪ G) = (E-F) ∩ (E-G)
+E - (F ∩ G) = (E-F) ∪ (E-G) ;  E - (F ∪ G) = (E-F) ∩ (E-G)<br />
 </p>
 </div>
 </div>
-<div id="outline-container-orgfe0b562" class="outline-4">
-<h4 id="orgfe0b562">An other one:</h4>
-<div class="outline-text-4" id="text-orgfe0b562">
+<div id="outline-container-orgac52c86" class="outline-4">
+<h4 id="orgac52c86">An other one:</h4>
+<div class="outline-text-4" id="text-orgac52c86">
 <p>
-E ∩ ∅ = ∅ ; E ∪ ∅ = E
+E ∩ ∅ = ∅ ; E ∪ ∅ = E<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org48afea2" class="outline-4">
-<h4 id="org48afea2">And an other one:</h4>
-<div class="outline-text-4" id="text-org48afea2">
+<div id="outline-container-orge0de23e" class="outline-4">
+<h4 id="orge0de23e">And an other one:</h4>
+<div class="outline-text-4" id="text-orge0de23e">
 <p>
-E ∩ (F Δ G) = (E ∩ F) Δ (E ∩ G)
+E ∩ (F Δ G) = (E ∩ F) Δ (E ∩ G)<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org1138be8" class="outline-4">
-<h4 id="org1138be8">And the last one:</h4>
-<div class="outline-text-4" id="text-org1138be8">
+<div id="outline-container-org8277b0b" class="outline-4">
+<h4 id="org8277b0b">And the last one:</h4>
+<div class="outline-text-4" id="text-org8277b0b">
 <p>
-E Δ ∅ = E ; E Δ E = ∅
+E Δ ∅ = E ; E Δ E = ∅<br />
 </p>
 </div>
 </div>
 </div>
 </div>
-<div id="outline-container-orgf188863" class="outline-2">
-<h2 id="orgf188863">5eme cours: L&rsquo;ensemble des parties d&rsquo;un ensemble <i>Oct 16</i></h2>
-<div class="outline-text-2" id="text-orgf188863">
+<div id="outline-container-orgeb2675e" class="outline-2">
+<h2 id="orgeb2675e">5eme cours: L&rsquo;ensemble des parties d&rsquo;un ensemble <i>Oct 16</i></h2>
+<div class="outline-text-2" id="text-orgeb2675e">
 <p>
-Let E be a set. We define P(E) as the set of all parts of E : <b>P(E) = {X/X ⊂ E}</b>
+Let E be a set. We define P(E) as the set of all parts of E : <b>P(E) = {X/X ⊂ E}</b><br />
 </p>
 </div>
-<div id="outline-container-org6cfe0d7" class="outline-4">
-<h4 id="org6cfe0d7">Notes :</h4>
-<div class="outline-text-4" id="text-org6cfe0d7">
+<div id="outline-container-org2c7d514" class="outline-4">
+<h4 id="org2c7d514">Notes :</h4>
+<div class="outline-text-4" id="text-org2c7d514">
 <p>
-∅ ∈ P(E) ; E ∈ P(E)
+∅ ∈ P(E) ; E ∈ P(E)<br />
 </p>
 
 
 <p>
-cardinal E = n <i>The number of terms in E</i> , cardinal P(E) = 2^n <i>The number of all parts of E</i>
+cardinal E = n <i>The number of terms in E</i> , cardinal P(E) = 2^n <i>The number of all parts of E</i><br />
 </p>
 </div>
 </div>
-<div id="outline-container-orgd0b341d" class="outline-4">
-<h4 id="orgd0b341d">Examples :</h4>
-<div class="outline-text-4" id="text-orgd0b341d">
+<div id="outline-container-org76da8f4" class="outline-4">
+<h4 id="org76da8f4">Examples :</h4>
+<div class="outline-text-4" id="text-org76da8f4">
 <p>
-E = {a,b,c} // P(E)={∅, {a}, {b}, {c}, {a,b}, {b,c}, {a,c}, {a,b,c}}
+E = {a,b,c} ; P(E)={∅, {a}, {b}, {c}, {a,b}, {b,c}, {a,c}, {a,b,c}}<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org7ec7b74" class="outline-3">
-<h3 id="org7ec7b74">Partition of a set :</h3>
-<div class="outline-text-3" id="text-org7ec7b74">
+<div id="outline-container-org3da3de1" class="outline-3">
+<h3 id="org3da3de1">Partition of a set :</h3>
+<div class="outline-text-3" id="text-org3da3de1">
 <p>
-We say that <b>A</b> is a partition of E if:
+We say that <b>A</b> is a partition of E if:<br />
 </p>
 <ol class="org-ol">
-<li>∀ x ∈ A , x ≠ 0</li>
-<li>All the elements of <b>A</b> are two by two disjoint. Or in other terms, there should not be two elements that intersects with each other.</li>
-<li>The reunion of all elements of <b>A</b> is equal to E</li>
+<li>∀ x ∈ A , x ≠ 0<br /></li>
+<li>All the elements of <b>A</b> are two by two disjoint. Or in other terms, there should not be two elements that intersects with each other.<br /></li>
+<li>The reunion of all elements of <b>A</b> is equal to E<br /></li>
 </ol>
 </div>
 </div>
-<div id="outline-container-orgc0fd081" class="outline-3">
-<h3 id="orgc0fd081">Cartesian products :</h3>
-<div class="outline-text-3" id="text-orgc0fd081">
+<div id="outline-container-org077b994" class="outline-3">
+<h3 id="org077b994">Cartesian products :</h3>
+<div class="outline-text-3" id="text-org077b994">
 <p>
-Let E and F be two sets, the set EXF = {(x,y)/ x ∈ E AND y ∈ F} is called the Cartesian product of E and F
+Let E and F be two sets, the set EXF = {(x,y)/ x ∈ E AND y ∈ F} is called the Cartesian product of E and F<br />
 </p>
 </div>
-<div id="outline-container-org4b0f328" class="outline-4">
-<h4 id="org4b0f328">Example :</h4>
-<div class="outline-text-4" id="text-org4b0f328">
+<div id="outline-container-org72822f5" class="outline-4">
+<h4 id="org72822f5">Example :</h4>
+<div class="outline-text-4" id="text-org72822f5">
 <p>
-A = {4,5} ; B= {4,5,6} // AxB = {(4,4), (4,5), (4,6), (5,4), (5,5), (5,6)}
+A = {4,5} ; B= {4,5,6} ; AxB = {(4,4), (4,5), (4,6), (5,4), (5,5), (5,6)}<br />
 </p>
 
 
 <p>
-BxA = {(4,4), (4,5), (5,4), (5,5), (6,4), (6,5)} // Therefore AxB ≠ BxA
+BxA = {(4,4), (4,5), (5,4), (5,5), (6,4), (6,5)} ; Therefore AxB ≠ BxA<br />
 </p>
 </div>
 </div>
-<div id="outline-container-orgc924520" class="outline-4">
-<h4 id="orgc924520">Some proprieties:</h4>
-<div class="outline-text-4" id="text-orgc924520">
+<div id="outline-container-org04e1be3" class="outline-4">
+<h4 id="org04e1be3">Some proprieties:</h4>
+<div class="outline-text-4" id="text-org04e1be3">
 <ol class="org-ol">
-<li>ExF = ∅ ⇔ E=∅ OR F=∅</li>
-<li>ExF = FxE ⇔ E=F OR E=∅ OR F=∅</li>
-<li>E x (F∪G) = (ExF) ∪ (ExG)</li>
-<li>(E∪F) x G = (ExG) ∪ (FxG)</li>
-<li>(E∪F) ∩ (GxH) = (E ∩ G) x (F ∩ H)</li>
-<li>Generally speaking : (ExF) ∪ (GxH) ≠ (E∪G) x (F∪H)</li>
+<li>ExF = ∅ ⇔ E=∅ OR F=∅<br /></li>
+<li>ExF = FxE ⇔ E=F OR E=∅ OR F=∅<br /></li>
+<li>E x (F∪G) = (ExF) ∪ (ExG)<br /></li>
+<li>(E∪F) x G = (ExG) ∪ (FxG)<br /></li>
+<li>(E∪F) ∩ (GxH) = (E ∩ G) x (F ∩ H)<br /></li>
+<li>Generally speaking : (ExF) ∪ (GxH) ≠ (E∪G) x (F∪H)<br /></li>
 </ol>
 </div>
 </div>
 </div>
 </div>
-<div id="outline-container-org8f809af" class="outline-2">
-<h2 id="org8f809af">Binary relations in a set :</h2>
-<div class="outline-text-2" id="text-org8f809af">
+<div id="outline-container-org416c1e1" class="outline-2">
+<h2 id="org416c1e1">Binary relations in a set :</h2>
+<div class="outline-text-2" id="text-org416c1e1">
 </div>
-<div id="outline-container-orgeb6cba6" class="outline-3">
-<h3 id="orgeb6cba6">Definition :</h3>
-<div class="outline-text-3" id="text-orgeb6cba6">
+<div id="outline-container-org5ea795f" class="outline-3">
+<h3 id="org5ea795f">Definition :</h3>
+<div class="outline-text-3" id="text-org5ea795f">
 <p>
-Let E be a set and x,y ∈ E. If there exists a link between x and y, we say that they are tied by a relation <b>R</b> and we write <b>xRy</b>
+Let E be a set and x,y ∈ E. If there exists a link between x and y, we say that they are tied by a relation <b>R</b> and we write <b>xRy</b><br />
 </p>
 </div>
 </div>
-<div id="outline-container-org1696189" class="outline-3">
-<h3 id="org1696189">Proprieties :</h3>
-<div class="outline-text-3" id="text-org1696189">
+<div id="outline-container-orgb9d678f" class="outline-3">
+<h3 id="orgb9d678f">Proprieties :</h3>
+<div class="outline-text-3" id="text-orgb9d678f">
 <p>
-Let E be a set and R a relation defined in E
+Let E be a set and R a relation defined in E<br />
 </p>
 <ol class="org-ol">
-<li>We say that R is reflexive if ∀ x ∈ E, xRx (for any element x in E,x is related to itself)</li>
-<li>We say that R is symmetrical if ∀ x,y ∈ E , xRy ⇒ yRx</li>
-<li>We say that R is transitive if ∀ x,y,z ∈ E (xRy , yRz) ⇒ xRz</li>
-<li>We say that R is anti-symmetrical if ∀ x,y ∈ E xRy AND yRx ⇒ x = y</li>
+<li>We say that R is reflexive if ∀ x ∈ E, xRx (for any element x in E,x is related to itself)<br /></li>
+<li>We say that R is symmetrical if ∀ x,y ∈ E , xRy ⇒ yRx<br /></li>
+<li>We say that R is transitive if ∀ x,y,z ∈ E (xRy , yRz) ⇒ xRz<br /></li>
+<li>We say that R is anti-symmetrical if ∀ x,y ∈ E xRy AND yRx ⇒ x = y<br /></li>
 </ol>
 </div>
 </div>
-<div id="outline-container-org38c5183" class="outline-3">
-<h3 id="org38c5183">Equivalence relationship :</h3>
-<div class="outline-text-3" id="text-org38c5183">
+<div id="outline-container-org6df8952" class="outline-3">
+<h3 id="org6df8952">Equivalence relationship :</h3>
+<div class="outline-text-3" id="text-org6df8952">
 <p>
-We say that R is a relation of equivalence in E if its reflexive, symetrical and transitive
+We say that R is a relation of equivalence in E if its reflexive, symetrical and transitive<br />
 </p>
 </div>
-<div id="outline-container-org110e6fa" class="outline-4">
-<h4 id="org110e6fa">Equivalence class :</h4>
-<div class="outline-text-4" id="text-org110e6fa">
+<div id="outline-container-orgfbd9232" class="outline-4">
+<h4 id="orgfbd9232">Equivalence class :</h4>
+<div class="outline-text-4" id="text-orgfbd9232">
 <p>
-Let R be a relation of equivalence in E and a ∈ E, we call equivalence class of <b>a</b>, and we write ̅a or ȧ, or cl a the following set :
+Let R be a relation of equivalence in E and a ∈ E, we call equivalence class of <b>a</b>, and we write ̅a or ȧ, or cl a the following set :<br />
 </p>
 
 
 <p>
-<b>a̅ = {y ∈ E/ y R a}</b>
+<b>a̅ = {y ∈ E/ y R a}</b><br />
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="org20e3b3b"></a>The quotient set :<br />
-<div class="outline-text-5" id="text-org20e3b3b">
+<li><a id="org1572848"></a>The quotient set :<br />
+<div class="outline-text-5" id="text-org1572848">
 <p>
-E/R = {̅a , a ∈ E}
+E/R = {̅a , a ∈ E}<br />
 </p>
 </div>
 </li>
 </ul>
 </div>
 </div>
-<div id="outline-container-org25fec1b" class="outline-3">
-<h3 id="org25fec1b">Order relationship :</h3>
-<div class="outline-text-3" id="text-org25fec1b">
+<div id="outline-container-org9a36dc1" class="outline-3">
+<h3 id="org9a36dc1">Order relationship :</h3>
+<div class="outline-text-3" id="text-org9a36dc1">
 <p>
-Let E be a set and R be a relation defined in E. We say that R is a relation of order if its reflexive, anti-symetrical and transitive.
+Let E be a set and R be a relation defined in E. We say that R is a relation of order if its reflexive, anti-symetrical and transitive.<br />
 </p>
 <ol class="org-ol">
-<li>The order R is called total if ∀ x,y ∈ E xRy OR yRx</li>
-<li>The order R is called partial if ∃ x,y ∈ E xR̅y AND yR̅x</li>
+<li>The order R is called total if ∀ x,y ∈ E xRy OR yRx<br /></li>
+<li>The order R is called partial if ∃ x,y ∈ E xR̅y AND yR̅x<br /></li>
 </ol>
 </div>
-<div id="outline-container-orgc094acc" class="outline-4">
-<h4 id="orgc094acc"><span class="todo TODO">TODO</span> Examples :</h4>
-<div class="outline-text-4" id="text-orgc094acc">
+<div id="outline-container-orgb496cba" class="outline-4">
+<h4 id="orgb496cba"><span class="todo TODO">TODO</span> Examples :</h4>
+<div class="outline-text-4" id="text-orgb496cba">
 <p>
-∀x,y ∈ ℝ , xRy ⇔ x²-y²=x-y
+∀x,y ∈ ℝ , xRy ⇔ x²-y²=x-y<br />
 </p>
 <ol class="org-ol">
-<li>Prove that R is an equivalence relation</li>
-<li>Let a ∈ ℝ, find ̅a</li>
+<li>Prove that R is an equivalence relation<br /></li>
+<li>Let a ∈ ℝ, find ̅a<br /></li>
 </ol>
 </div>
 </div>
 </div>
 </div>
+<div id="outline-container-org54d5489" class="outline-2">
+<h2 id="org54d5489">TP exercices <i>Oct 20</i> :</h2>
+<div class="outline-text-2" id="text-org54d5489">
+</div>
+<div id="outline-container-orgdfd55ca" class="outline-3">
+<h3 id="orgdfd55ca">Exercice 3 :</h3>
+<div class="outline-text-3" id="text-orgdfd55ca">
+</div>
+<div id="outline-container-org4100fe3" class="outline-4">
+<h4 id="org4100fe3">Question 3</h4>
+<div class="outline-text-4" id="text-org4100fe3">
+<p>
+Montrer par l&rsquo;absurde que P : ∀x ∈ ℝ*, √(4+x³) ≠ 2 + x³/4 est vraies<br />
+</p>
+
+<p class="verse">
+On suppose que ∃ x ∈ ℝ* , √(4+x³) = 2 + x³/4<br />
+4+x³ = (2 + x³/4)²<br />
+4+x³ = 4 + x⁶/16 + 4*(x³/4)<br />
+4+x³ = 4 + x⁶/16 + x³<br />
+x⁶/16 = 0<br />
+x⁶ = 0<br />
+x = 0 . Or, x appartiens a ℝ\{0}, donc P̅ est fausse. Ce qui est equivalent a dire que P est vraie<br />
+</p>
+</div>
+</div>
+</div>
+<div id="outline-container-org019b5e0" class="outline-3">
+<h3 id="org019b5e0">Exercice 4 :</h3>
+<div class="outline-text-3" id="text-org019b5e0">
+</div>
+<div id="outline-container-org2ae1181" class="outline-4">
+<h4 id="org2ae1181"><span class="done DONE">DONE</span> Question 1 :</h4>
+<div class="outline-text-4" id="text-org2ae1181">
+<p class="verse">
+∀ n ∈ ℕ* , (n ,k=1)Σ1/k(k+1) = 1 - 1/1+n<br />
+P(n) : (n ,k=1)Σ1/k(k+1) = 1 - 1/1+n<br />
+1. <b>On vérifie P(n) pour n = 1</b><br />
+(1 ,k=1)Σ1/k(k+1) = 1/1(1+1)<br />
+&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;= 1/2 &#x2014; (1)<br />
+1 - 1/1+1         = 1 - 1/2<br />
+&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;&#xa0;= 1/2 &#x2014; (2)<br />
+De (1) et (2), P(0) est vraie -&#x2014; (a)<br />
+<br />
+2. <b>On suppose que P(n) est vraie pour n ≥ n1 puis on vérifie pour n+1</b><br />
+(n ,k=1)Σ1/k(k+1) = 1 - 1/1+n<br />
+(n ,k=1)Σ1/k(k+1) + 1/(n+1)(n+2) = 1 - (1/(1+n)) + 1/(n+1)(n+2)<br />
+(n+1 ,k=1)Σ1/k(k+1) = 1 - 1/(n+1) + 1/[(n+1)(n+2)]<br />
+(n+1 ,k=1)Σ1/k(k+1) = 1 + 1/[(n+1)(n+2)] - (n+2)/[(n+1)(n+2)]<br />
+(n+1 ,k=1)Σ1/k(k+1) = 1 + [1-(n+2)]/[(n+1)(n+2)]<br />
+(n+1 ,k=1)Σ1/k(k+1) = 1 + [-n-1]/[(n+1)(n+2)]<br />
+(n+1 ,k=1)Σ1/k(k+1) = 1 - [n+1]/[(n+1)(n+2)]<br />
+(n+1 ,k=1)Σ1/k(k+1) = 1 - 1/(n+1+1) <b>CQFD</b><br />
+<br />
+Donc P(n+1) est vraie. -&#x2014; (b)<br />
+De (a) et (b) on conclus que la proposition de départ est vraie<br />
+</p>
+</div>
+</div>
+</div>
+</div>
 </div>
 <div id="postamble" class="status">
 <p class="author">Author: Crystal</p>
-<p class="date">Created: 2023-10-17 Tue 22:32</p>
+<p class="date">Created: 2023-10-20 Fri 15:12</p>
 </div>
 </body>
 </html>
\ No newline at end of file