summary refs log tree commit diff stats
path: root/src/org
diff options
context:
space:
mode:
Diffstat (limited to 'src/org')
-rwxr-xr-xsrc/org/index.org22
-rwxr-xr-xsrc/org/uni_notes/algebra1.org100
2 files changed, 101 insertions, 21 deletions
diff --git a/src/org/index.org b/src/org/index.org
index a067e01..609b221 100755
--- a/src/org/index.org
+++ b/src/org/index.org
@@ -5,7 +5,7 @@
 #+EXPORT_FILE_NAME: ../../index.html
 #+HTML_HEAD: <link rel="stylesheet" type="text/css" href="src/css/colors.css"/>
 #+HTML_HEAD: <link rel="stylesheet" type="text/css" href="src/css/style.css"/>
-#+OPTIONS: \n:y
+
 #+OPTIONS: html-style:nil
 #+OPTIONS: toc:nil
 * Welcome to Crystal's Cozy Nook!
@@ -53,25 +53,7 @@ Want to leave a message, opinion, review or a salty insult ? Be sure to Sign my
             alt="Valid CSS!" />
     </a>
 #+END_EXPORT
-[[https://nishi.boats/][file:./src/gifs/blinkies/nishiboats.jpg]]
-[[./src/gifs/blinkies/girlsnow.png]]
-[[./src/gifs/blinkies/cookiefree.gif]]
-[[./src/gifs/blinkies/transnow2.gif]]
-[[./src/gifs/blinkies/gaywebring.gif]]
-[[./src/gifs/blinkies/tranarchy.gif]]
-[[./src/gifs/blinkies/button-torrents.gif]]
-[[./src/gifs/blinkies/tyg.gif]]
-[[./src/gifs/blinkies/fuck-google.gif]]
-[[./src/gifs/blinkies/fuck_facebook.gif]]
-[[./src/gifs/blinkies/graphics_by_gimp.gif]]
-[[./src/gifs/blinkies/learn_html.gif]]
-[[./src/gifs/blinkies/leave-twitter.gif]]
-[[./src/gifs/blinkies/stop_microsoft.gif]]
-[[./src/gifs/blinkies/web-pi.png]]
-[[./src/gifs/blinkies/piracy.gif]]
-[[./src/gifs/blinkies/best_viewed_with_eyes.gif]]
-[[https://spyware.neocities.org/articles/discord][file:./src/gifs/blinkies/discord-no-way-2.gif]]
-[[https://yesterweb.org/no-to-web3/][file:./src/gifs/blinkies/roly-saynotoweb3.gif]]
+[[https://nishi.boats/][file:./src/gifs/blinkies/nishiboats.jpg]] [[./src/gifs/blinkies/girlsnow.png]] [[./src/gifs/blinkies/cookiefree.gif]] [[./src/gifs/blinkies/transnow2.gif]] [[./src/gifs/blinkies/gaywebring.gif]] [[./src/gifs/blinkies/tranarchy.gif]] [[./src/gifs/blinkies/button-torrents.gif]] [[./src/gifs/blinkies/tyg.gif]] [[./src/gifs/blinkies/fuck-google.gif]] [[./src/gifs/blinkies/fuck_facebook.gif]] [[./src/gifs/blinkies/graphics_by_gimp.gif]] [[./src/gifs/blinkies/learn_html.gif]] [[./src/gifs/blinkies/leave-twitter.gif]][[./src/gifs/blinkies/stop_microsoft.gif]] [[./src/gifs/blinkies/web-pi.png]] [[./src/gifs/blinkies/piracy.gif]] [[./src/gifs/blinkies/best_viewed_with_eyes.gif]] [[https://spyware.neocities.org/articles/discord][file:./src/gifs/blinkies/discord-no-way-2.gif]] [[https://yesterweb.org/no-to-web3/][file:./src/gifs/blinkies/roly-saynotoweb3.gif]]
 
 
 [[https://openbsd.org/][file:./src/gifs/blinkies/openbsd.png]]
diff --git a/src/org/uni_notes/algebra1.org b/src/org/uni_notes/algebra1.org
index 865d5b1..fa87d81 100755
--- a/src/org/uni_notes/algebra1.org
+++ b/src/org/uni_notes/algebra1.org
@@ -472,7 +472,7 @@ If F ⊂ E. E - F is the complimentary of F in E.
 
 
 FCE = {x /x ∈ E AND x ∉ F} *ONLY WHEN F IS A SUBSET OF E*
-*** Symentrical difference
+*** Symmetrical difference
 E Δ F = (E - F) ∪ (F - E) ; = (E ∪ F) - (E ∩ F)
 ** Proprieties :
 Let E,F and G be 3 sets. We have :
@@ -594,3 +594,101 @@ De (1) et (2), P(0) est vraie ---- (a)
 Donc P(n+1) est vraie. ---- (b)
 De (a) et (b) on conclus que la proposition de départ est vraie
 #+END_VERSE
+* Chapter 3 : Applications
+** 3.1 Generalities about applications :
+*** Definition :
+Let E and F be two sets.
+1. We call a function of the set E to the set F any relation from E to F such as for any element of E, we can find _at most one_ element of F that corresponds to it.
+2. We call an application of the set E to the set F a relation from E to F such as for any element of E, we can find _one and only one_ element of F that corresponds to it.
+3. f: E_{1} ---> F_{1} ; g: E_{2} ---> F_{2} ; f ≡ g ⇔ [E_{1 }= E_{2} ; F_{1} = F_{2} ; f(x) = g(x) ∀x ∈ E_{1}
+
+   Generally speaking, we schematize a function or an application by this writing :
+   #+BEGIN_VERSE
+   f : E ---> F
+       x ---> f(x)=y
+      Γ = {(x , f(x))/ x ∈ E ; f(x) ∈ F} is the graph of f
+   #+END_VERSE
+**** Some examples :
+***** Ex1:
+#+BEGIN_VERSE
+f : ℝ ---> ℝ
+    x ---> f(x) = (x-1)/x
+is a function, because 0 does NOT have a corresponding element using that relation.
+#+END_VERSE
+***** Ex2:
+#+BEGIN_VERSE
+f : ℝ^{*} ---> ℝ
+    x ---> f(x)= (x-1)/x
+is, however, an application
+#+END_VERSE
+*** Restriction and prolongation of an application :
+Let f : E -> F an application and E_{1} ⊂ E therefore :
+#+BEGIN_VERSE
+g : E_{1} -> F
+g(x) = f(x) ∀x ∈ E_{1}
+
+g is called the *restriction* of f to E_{1}. And f is called the *prolongation* of g to E.
+#+END_VERSE
+**** Example
+#+BEGIN_VERSE
+f : ℝ ---> ℝ
+    x ---> f(x) = x^{2}
+
+g : [0 , +∞[ ---> ℝ
+    x ---> g(x) = x²
+
+g is called the *restriction* of f to ℝ^{+}. And f is called the *prolongation* of g to ℝ.
+#+END_VERSE
+*** Composition of applications :
+Let E,F, and G be three sets, f: E -> F and g: F -> G are two applications. We define their composition, symbolized by g_{o}f as follow :
+
+
+g_{o}f : E -> G . ∀x ∈ E (g_{o}f)_{(x)}= g(f(x))
+** 3.2 Injection, surjection and bijection :
+Let f: E -> F be an application :
+1. We say that f is injective if : ∀x,x' ∈ E : f(x) = f(x') ⇒ x = x'
+2. We say that f is surjective if : ∀ y ∈ F , ∃ x ∈ E : y = f(x)
+3. We say that if is bijective if it's both injective and surjective at the same time.
+*** Proposition :
+Let f : E -> F be an application. Therefore:
+1. f is injective ⇔ y = f(x) has at most one solution.
+2. f is surjective ⇔ y = f(x) has at least one solution.
+3. f is bijective ⇔ y = f(x) has a single and unique solution.
+** 3.3 Reciprocal applications :
+*** Def :
+Let f : E -> F a bijective application. So there exists an application named f^{-1} : F -> E such as : y = f(x) ⇔ x = f^{-1}(y)
+*** Theorem :
+Let f : E -> F be a bijective application. Therefore its reciprocal f^{-1} verifies : f^{-1}_{o}f=Id_{E }; f_{o}f^{-1}=Id_{F} Or :
+
+
+Id_{E} : E -> E ; x -> Id_{E}(x) = x
+*** Some proprieties :
+1. (f^{-1})^{-1} = f
+2. (g_{o}f)⁻¹ = f⁻¹_{o}g⁻¹
+3. The graphs of f and f⁻¹ are symmetrical to each other by the first bis-sectrice of the equation y = x
+** 3.4 Direct Image and reciprocal Image :
+*** Direct Image :
+   Let f: E-> F be an application and A ⊂ E. We call a direct image of A by f, and we symbolize as f(A) the subset of F defined by :
+
+
+f(A) = {f(x)/ x ∈ A} ; = { y ∈ F ∃ x ∈ A  y=f(x)}
+**** Example :
+#+BEGIN_VERSE
+f: ℝ -> ℝ
+   x -> f(x) = x²
+A = {0,4}
+f(A) = {f(0), f(4)} = {0, 16}
+#+END_VERSE
+*** Reciprocal image :
+Let f: E -> F be an application and B ⊂ F. We call the reciprocal image of E by F the subset f^{-1}(B) :
+
+
+f^{-1}(B) = {x ∈ E/f(x) ∈ B} ; x ∈ f^{-1}(B) ⇔ f(x) ∈ B
+**** Example :
+#+BEGIN_VERSE
+f: ℝ -> ℝ
+   x -> f(x) = x²
+B = {1,9,4}
+f^{-1}(B) = {1,-1,2,-2,3,-3}
+      = {x ∈ ℝ/x² ∈ {1,4,9}}
+#+END_VERSE
'alt'>
82ac0b7e ^

363be37f ^
795f5244 ^
57d01f21 ^
b24eb476 ^
795f5244 ^
82ac0b7e ^
b24eb476 ^
ab6ed192 ^
0487a30e ^
c6034af3 ^

795f5244 ^
c6034af3 ^
b0bf5321 ^
c6034af3 ^
b0bf5321 ^

9dcbec39 ^
82ac0b7e ^

ae256ea1 ^

9dcbec39 ^
35064671 ^

9dcbec39 ^
ae256ea1 ^
3e5f4358 ^
9dcbec39 ^
3e5f4358 ^

f3760b0f ^
f22250a1 ^
9dcbec39 ^
82ac0b7e ^

795f5244 ^
57d01f21 ^
9dcbec39 ^
57d01f21 ^

f22250a1 ^
82ac0b7e ^



82ac0b7e ^


b24eb476 ^

82ac0b7e ^
1b76245c ^
82ac0b7e ^

ae256ea1 ^
1b76245c ^
b24eb476 ^
82ac0b7e ^
363be37f ^
1e38eee5 ^
363be37f ^

82ac0b7e ^




b24eb476 ^
82ac0b7e ^
f3760b0f ^
9dcbec39 ^
b24eb476 ^
1b76245c ^
82ac0b7e ^
1b76245c ^
1e38eee5 ^
82ac0b7e ^







b24eb476 ^
82ac0b7e ^
f3760b0f ^
9dcbec39 ^
1e38eee5 ^
82ac0b7e ^
f22250a1 ^

82ac0b7e ^

5f98a10c ^
b24eb476 ^

82ac0b7e ^
ae256ea1 ^

9dcbec39 ^
e4630643 ^

ae256ea1 ^
82ac0b7e ^
f3760b0f ^
82ac0b7e ^
1e38eee5 ^


1ead3562 ^
1e38eee5 ^


9dcbec39 ^

2655ae72 ^



















1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175