summary refs log tree commit diff stats
path: root/uni_notes/algebra.html
diff options
context:
space:
mode:
Diffstat (limited to 'uni_notes/algebra.html')
-rwxr-xr-xuni_notes/algebra.html731
1 files changed, 366 insertions, 365 deletions
diff --git a/uni_notes/algebra.html b/uni_notes/algebra.html
index c42a1b5..0e223c5 100755
--- a/uni_notes/algebra.html
+++ b/uni_notes/algebra.html
@@ -3,7 +3,7 @@
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
-<!-- 2023-10-23 Mon 19:39 -->
+<!-- 2023-11-01 Wed 20:17 -->
 <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <title>Algebra 1</title>
@@ -11,6 +11,7 @@
 <meta name="generator" content="Org Mode" />
 <link rel="stylesheet" type="text/css" href="../src/css/colors.css"/>
 <link rel="stylesheet" type="text/css" href="../src/css/style.css"/>
+<link rel="icon" type="image/x-icon" href="https://crystal.tilde.institute/favicon.png">
 </head>
 <body>
 <div id="org-div-home-and-up">
@@ -23,161 +24,161 @@
 <h2>Table of Contents</h2>
 <div id="text-table-of-contents" role="doc-toc">
 <ul>
-<li><a href="#org4a250bc">Contenu de la Matiére</a>
+<li><a href="#org42f27fc">Contenu de la Matiére</a>
 <ul>
-<li><a href="#orga898532">Rappels et compléments (11H)</a></li>
-<li><a href="#org01bcbce">Structures Algébriques (11H)</a></li>
-<li><a href="#orgbe1e218">Polynômes et fractions rationnelles</a></li>
+<li><a href="#orgf20cf94">Rappels et compléments (11H)</a></li>
+<li><a href="#orgf700058">Structures Algébriques (11H)</a></li>
+<li><a href="#org7a29a82">Polynômes et fractions rationnelles</a></li>
 </ul>
 </li>
-<li><a href="#orgc75277f">Premier cours : Logique mathématique et méthodes du raisonnement mathématique <i>Sep 25</i> :</a>
+<li><a href="#org7207cb0">Premier cours : Logique mathématique et méthodes du raisonnement mathématique <i>Sep 25</i> :</a>
 <ul>
-<li><a href="#orge4d9578">Properties:</a>
+<li><a href="#orgb936329">Properties:</a>
 <ul>
-<li><a href="#orgb979f5e"><b>Absorption</b>:</a></li>
-<li><a href="#org747a426"><b>Commutativity</b>:</a></li>
-<li><a href="#org515acb7"><b>Associativity</b>:</a></li>
-<li><a href="#orgbd31315"><b>Distributivity</b>:</a></li>
-<li><a href="#org6ffa08f"><b>Neutral element</b>:</a></li>
-<li><a href="#org5687242"><b>Negation of a conjunction &amp; a disjunction</b>:</a></li>
-<li><a href="#orge1d09c1"><b>Transitivity</b>:</a></li>
-<li><a href="#orgcbc82d0"><b>Contraposition</b>:</a></li>
-<li><a href="#org41b3b67">God only knows what this property is called:</a></li>
+<li><a href="#orgf5da498"><b>Absorption</b>:</a></li>
+<li><a href="#org49dbf9d"><b>Commutativity</b>:</a></li>
+<li><a href="#orge255044"><b>Associativity</b>:</a></li>
+<li><a href="#org31cc6c8"><b>Distributivity</b>:</a></li>
+<li><a href="#orgf861930"><b>Neutral element</b>:</a></li>
+<li><a href="#org8cb6e02"><b>Negation of a conjunction &amp; a disjunction</b>:</a></li>
+<li><a href="#orgfe01ac7"><b>Transitivity</b>:</a></li>
+<li><a href="#org976f527"><b>Contraposition</b>:</a></li>
+<li><a href="#org0865f2b">God only knows what this property is called:</a></li>
 </ul>
 </li>
-<li><a href="#org8339e2b">Some exercices I found online :</a>
+<li><a href="#org316b141">Some exercices I found online :</a>
 <ul>
-<li><a href="#org4e164f4">USTHB 2022/2023 Section B :</a></li>
+<li><a href="#orga3825f4">USTHB 2022/2023 Section B :</a></li>
 </ul>
 </li>
 </ul>
 </li>
-<li><a href="#org966520a">2éme cours <i>Oct 2</i></a>
+<li><a href="#org21d6c03">2éme cours <i>Oct 2</i></a>
 <ul>
-<li><a href="#orgafe4a7b">Quantifiers</a>
+<li><a href="#orgd6c9f49">Quantifiers</a>
 <ul>
-<li><a href="#org5441c86">Proprieties</a></li>
+<li><a href="#orgb332b43">Proprieties</a></li>
 </ul>
 </li>
-<li><a href="#orga224095">Multi-parameter proprieties :</a></li>
-<li><a href="#org019a7b1">Methods of mathematical reasoning :</a>
+<li><a href="#orged685c1">Multi-parameter proprieties :</a></li>
+<li><a href="#org78d7ed0">Methods of mathematical reasoning :</a>
 <ul>
-<li><a href="#org235fea9">Direct reasoning :</a></li>
-<li><a href="#orgae58c37">Reasoning by the Absurd:</a></li>
-<li><a href="#orgb7e7f5f">Reasoning by contraposition:</a></li>
-<li><a href="#org2199fd0">Reasoning by counter example:</a></li>
+<li><a href="#org7d21c38">Direct reasoning :</a></li>
+<li><a href="#orgcfd8723">Reasoning by the Absurd:</a></li>
+<li><a href="#org102d3fa">Reasoning by contraposition:</a></li>
+<li><a href="#org81cb388">Reasoning by counter example:</a></li>
 </ul>
 </li>
 </ul>
 </li>
-<li><a href="#org97d10cc">3eme Cours : <i>Oct 9</i></a>
+<li><a href="#orgc2178b8">3eme Cours : <i>Oct 9</i></a>
 <ul>
 <li>
 <ul>
-<li><a href="#orgc324cd9">Reasoning by recurrence :</a></li>
+<li><a href="#org4855f6f">Reasoning by recurrence :</a></li>
 </ul>
 </li>
 </ul>
 </li>
-<li><a href="#org924a736">4eme Cours : Chapitre 2 : Sets and Operations</a>
+<li><a href="#orgde6bfac">4eme Cours : Chapitre 2 : Sets and Operations</a>
 <ul>
-<li><a href="#org9d2cb2d">Definition of a set :</a></li>
-<li><a href="#org3b107a4">Belonging, inclusion, and equality :</a></li>
-<li><a href="#orgbba2f2c">Intersections and reunions :</a>
+<li><a href="#orgfe8000a">Definition of a set :</a></li>
+<li><a href="#orgfe04671">Belonging, inclusion, and equality :</a></li>
+<li><a href="#orga2eb99d">Intersections and reunions :</a>
 <ul>
-<li><a href="#org4fd2e61">Intersection:</a></li>
-<li><a href="#orgabd991c">Union:</a></li>
-<li><a href="#org083102e">Difference between two sets:</a></li>
-<li><a href="#orgcc1969e">Complimentary set:</a></li>
-<li><a href="#org72511ff">Symmetrical difference</a></li>
+<li><a href="#org560d563">Intersection:</a></li>
+<li><a href="#org7147bc3">Union:</a></li>
+<li><a href="#org16b5ab2">Difference between two sets:</a></li>
+<li><a href="#orgdac190b">Complimentary set:</a></li>
+<li><a href="#org4e0b111">Symmetrical difference</a></li>
 </ul>
 </li>
-<li><a href="#org44b1b96">Proprieties :</a>
+<li><a href="#org691c863">Proprieties :</a>
 <ul>
-<li><a href="#orga3eac79">Commutativity:</a></li>
-<li><a href="#org1a9121a">Associativity:</a></li>
-<li><a href="#orgaf7fe3b">Distributivity:</a></li>
-<li><a href="#org658b728">Lois de Morgan:</a></li>
-<li><a href="#org4f0dd58">An other one:</a></li>
-<li><a href="#orgdd60033">An other one:</a></li>
-<li><a href="#orgbf5feb1">And an other one:</a></li>
-<li><a href="#orgefabd47">And the last one:</a></li>
+<li><a href="#org9cc9f31">Commutativity:</a></li>
+<li><a href="#org471083b">Associativity:</a></li>
+<li><a href="#orge63be10">Distributivity:</a></li>
+<li><a href="#orgfb01947">Lois de Morgan:</a></li>
+<li><a href="#orge1a41eb">An other one:</a></li>
+<li><a href="#org9939b0f">An other one:</a></li>
+<li><a href="#org90bfdc4">And an other one:</a></li>
+<li><a href="#org1e49001">And the last one:</a></li>
 </ul>
 </li>
 </ul>
 </li>
-<li><a href="#orgc9ed06c">5eme cours: L&rsquo;ensemble des parties d&rsquo;un ensemble <i>Oct 16</i></a>
+<li><a href="#org272eca3">5eme cours: L&rsquo;ensemble des parties d&rsquo;un ensemble <i>Oct 16</i></a>
 <ul>
 <li>
 <ul>
-<li><a href="#org7a1da3c">Notes :</a></li>
-<li><a href="#orga6e5f8a">Examples :</a></li>
+<li><a href="#org5b29e32">Notes :</a></li>
+<li><a href="#org5636bd8">Examples :</a></li>
 </ul>
 </li>
-<li><a href="#org7286ec5">Partition of a set :</a></li>
-<li><a href="#orgd8e00ac">Cartesian products :</a>
+<li><a href="#orgd8cb2c3">Partition of a set :</a></li>
+<li><a href="#orgf40404d">Cartesian products :</a>
 <ul>
-<li><a href="#orgdb491ee">Example :</a></li>
-<li><a href="#org28c23b2">Some proprieties:</a></li>
+<li><a href="#orgd526cb8">Example :</a></li>
+<li><a href="#org56dd088">Some proprieties:</a></li>
 </ul>
 </li>
 </ul>
 </li>
-<li><a href="#orgfdbe4f3">Binary relations in a set :</a>
+<li><a href="#org5ee4278">Binary relations in a set :</a>
 <ul>
-<li><a href="#org3696656">Definition :</a></li>
-<li><a href="#orgd32f673">Proprieties :</a></li>
-<li><a href="#org22f460a">Equivalence relationship :</a>
+<li><a href="#orgddc9af6">Definition :</a></li>
+<li><a href="#orge65424e">Proprieties :</a></li>
+<li><a href="#orgd7877d3">Equivalence relationship :</a>
 <ul>
-<li><a href="#org68ddde2">Equivalence class :</a></li>
+<li><a href="#org85cf025">Equivalence class :</a></li>
 </ul>
 </li>
-<li><a href="#orge976c7e">Order relationship :</a>
+<li><a href="#orge18dcc7">Order relationship :</a>
 <ul>
-<li><a href="#org1f19847"><span class="todo TODO">TODO</span> Examples :</a></li>
+<li><a href="#org60d471a"><span class="todo TODO">TODO</span> Examples :</a></li>
 </ul>
 </li>
 </ul>
 </li>
-<li><a href="#orgc956a73">TP exercices <i>Oct 20</i> :</a>
+<li><a href="#org77de6e3">TP exercices <i>Oct 20</i> :</a>
 <ul>
-<li><a href="#org15b0e75">Exercice 3 :</a>
+<li><a href="#org3ca8006">Exercice 3 :</a>
 <ul>
-<li><a href="#orgb132892">Question 3</a></li>
+<li><a href="#orgad95ec3">Question 3</a></li>
 </ul>
 </li>
-<li><a href="#org9a4006b">Exercice 4 :</a>
+<li><a href="#org8180ae0">Exercice 4 :</a>
 <ul>
-<li><a href="#org43cf6d6"><span class="done DONE">DONE</span> Question 1 :</a></li>
+<li><a href="#orgfe0b1e2"><span class="done DONE">DONE</span> Question 1 :</a></li>
 </ul>
 </li>
 </ul>
 </li>
-<li><a href="#org429ab91">Chapter 3 : Applications</a>
+<li><a href="#org2d6e0ba">Chapter 3 : Applications</a>
 <ul>
-<li><a href="#org4a4b3cf">3.1 Generalities about applications :</a>
+<li><a href="#orga5be12f">3.1 Generalities about applications :</a>
 <ul>
-<li><a href="#org0cac0c6">Definition :</a></li>
-<li><a href="#orgc048e93">Restriction and prolongation of an application :</a></li>
-<li><a href="#org8e61361">Composition of applications :</a></li>
+<li><a href="#org805d7bc">Definition :</a></li>
+<li><a href="#org7947331">Restriction and prolongation of an application :</a></li>
+<li><a href="#orgd94bc69">Composition of applications :</a></li>
 </ul>
 </li>
-<li><a href="#org5c096db">3.2 Injection, surjection and bijection :</a>
+<li><a href="#org257d05a">3.2 Injection, surjection and bijection :</a>
 <ul>
-<li><a href="#org4162b56">Proposition :</a></li>
+<li><a href="#org1612e09">Proposition :</a></li>
 </ul>
 </li>
-<li><a href="#org736de6c">3.3 Reciprocal applications :</a>
+<li><a href="#orgebdf518">3.3 Reciprocal applications :</a>
 <ul>
-<li><a href="#orgafb7f85">Def :</a></li>
-<li><a href="#orgec3a3d6">Theorem :</a></li>
-<li><a href="#org940e2d6">Some proprieties :</a></li>
+<li><a href="#orgf072e42">Def :</a></li>
+<li><a href="#org244b352">Theorem :</a></li>
+<li><a href="#org1479c0e">Some proprieties :</a></li>
 </ul>
 </li>
-<li><a href="#org2d173c2">3.4 Direct Image and reciprocal Image :</a>
+<li><a href="#orgaf81bb3">3.4 Direct Image and reciprocal Image :</a>
 <ul>
-<li><a href="#org769c809">Direct Image :</a></li>
-<li><a href="#org7d705d3">Reciprocal image :</a></li>
+<li><a href="#org87b91e2">Direct Image :</a></li>
+<li><a href="#org500bc40">Reciprocal image :</a></li>
 </ul>
 </li>
 </ul>
@@ -185,13 +186,13 @@
 </ul>
 </div>
 </div>
-<div id="outline-container-org4a250bc" class="outline-2">
-<h2 id="org4a250bc">Contenu de la Matiére</h2>
-<div class="outline-text-2" id="text-org4a250bc">
+<div id="outline-container-org42f27fc" class="outline-2">
+<h2 id="org42f27fc">Contenu de la Matiére</h2>
+<div class="outline-text-2" id="text-org42f27fc">
 </div>
-<div id="outline-container-orga898532" class="outline-3">
-<h3 id="orga898532">Rappels et compléments (11H)</h3>
-<div class="outline-text-3" id="text-orga898532">
+<div id="outline-container-orgf20cf94" class="outline-3">
+<h3 id="orgf20cf94">Rappels et compléments (11H)</h3>
+<div class="outline-text-3" id="text-orgf20cf94">
 <ul class="org-ul">
 <li>Logique mathématique et méthodes du raisonnement mathématique<br /></li>
 <li>Ensembles et Relations<br /></li>
@@ -199,9 +200,9 @@
 </ul>
 </div>
 </div>
-<div id="outline-container-org01bcbce" class="outline-3">
-<h3 id="org01bcbce">Structures Algébriques (11H)</h3>
-<div class="outline-text-3" id="text-org01bcbce">
+<div id="outline-container-orgf700058" class="outline-3">
+<h3 id="orgf700058">Structures Algébriques (11H)</h3>
+<div class="outline-text-3" id="text-orgf700058">
 <ul class="org-ul">
 <li>Groupes et morphisme de groupes<br /></li>
 <li>Anneaux et morphisme d&rsquo;anneaux<br /></li>
@@ -209,9 +210,9 @@
 </ul>
 </div>
 </div>
-<div id="outline-container-orgbe1e218" class="outline-3">
-<h3 id="orgbe1e218">Polynômes et fractions rationnelles</h3>
-<div class="outline-text-3" id="text-orgbe1e218">
+<div id="outline-container-org7a29a82" class="outline-3">
+<h3 id="org7a29a82">Polynômes et fractions rationnelles</h3>
+<div class="outline-text-3" id="text-org7a29a82">
 <ul class="org-ul">
 <li>Notion du polynôme à une indéterminée á coefficients dans un anneau<br /></li>
 <li>Opérations Algébriques sur les polynômes<br /></li>
@@ -224,9 +225,9 @@
 </div>
 </div>
 </div>
-<div id="outline-container-orgc75277f" class="outline-2">
-<h2 id="orgc75277f">Premier cours : Logique mathématique et méthodes du raisonnement mathématique <i>Sep 25</i> :</h2>
-<div class="outline-text-2" id="text-orgc75277f">
+<div id="outline-container-org7207cb0" class="outline-2">
+<h2 id="org7207cb0">Premier cours : Logique mathématique et méthodes du raisonnement mathématique <i>Sep 25</i> :</h2>
+<div class="outline-text-2" id="text-org7207cb0">
 <p>
 Let <b>P</b> <b>Q</b> and <b>R</b> be propositions which can either be <b>True</b> or <b>False</b>. And let&rsquo;s also give the value <b>1</b> to each <b>True</b> proposition and <b>0</b> to each false one.<br />
 </p>
@@ -576,13 +577,13 @@ A proposition is equivalent to another only when both of them have <b>the same v
 <i>Note: P implying Q is equivalent to P̅ implying Q̅, or: (P ⇒ Q) ⇔ (P̅ ⇒ Q̅)</i><br />
 </p>
 </div>
-<div id="outline-container-orge4d9578" class="outline-3">
-<h3 id="orge4d9578">Properties:</h3>
-<div class="outline-text-3" id="text-orge4d9578">
+<div id="outline-container-orgb936329" class="outline-3">
+<h3 id="orgb936329">Properties:</h3>
+<div class="outline-text-3" id="text-orgb936329">
 </div>
-<div id="outline-container-orgb979f5e" class="outline-4">
-<h4 id="orgb979f5e"><b>Absorption</b>:</h4>
-<div class="outline-text-4" id="text-orgb979f5e">
+<div id="outline-container-orgf5da498" class="outline-4">
+<h4 id="orgf5da498"><b>Absorption</b>:</h4>
+<div class="outline-text-4" id="text-orgf5da498">
 <p>
 (P ∨ P) ⇔ P<br />
 </p>
@@ -592,9 +593,9 @@ A proposition is equivalent to another only when both of them have <b>the same v
 </p>
 </div>
 </div>
-<div id="outline-container-org747a426" class="outline-4">
-<h4 id="org747a426"><b>Commutativity</b>:</h4>
-<div class="outline-text-4" id="text-org747a426">
+<div id="outline-container-org49dbf9d" class="outline-4">
+<h4 id="org49dbf9d"><b>Commutativity</b>:</h4>
+<div class="outline-text-4" id="text-org49dbf9d">
 <p>
 (P ∧ Q) ⇔ (Q ∧ P)<br />
 </p>
@@ -604,9 +605,9 @@ A proposition is equivalent to another only when both of them have <b>the same v
 </p>
 </div>
 </div>
-<div id="outline-container-org515acb7" class="outline-4">
-<h4 id="org515acb7"><b>Associativity</b>:</h4>
-<div class="outline-text-4" id="text-org515acb7">
+<div id="outline-container-orge255044" class="outline-4">
+<h4 id="orge255044"><b>Associativity</b>:</h4>
+<div class="outline-text-4" id="text-orge255044">
 <p>
 P ∧ (Q ∧ R) ⇔ (P ∧ Q) ∧ R<br />
 </p>
@@ -616,9 +617,9 @@ P ∨ (Q ∨ R) ⇔ (P ∨ Q) ∨ R<br />
 </p>
 </div>
 </div>
-<div id="outline-container-orgbd31315" class="outline-4">
-<h4 id="orgbd31315"><b>Distributivity</b>:</h4>
-<div class="outline-text-4" id="text-orgbd31315">
+<div id="outline-container-org31cc6c8" class="outline-4">
+<h4 id="org31cc6c8"><b>Distributivity</b>:</h4>
+<div class="outline-text-4" id="text-org31cc6c8">
 <p>
 P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R)<br />
 </p>
@@ -628,9 +629,9 @@ P ∨ (Q ∧ R) ⇔ (P ∨ Q) ∧ (P ∨ R)<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org6ffa08f" class="outline-4">
-<h4 id="org6ffa08f"><b>Neutral element</b>:</h4>
-<div class="outline-text-4" id="text-org6ffa08f">
+<div id="outline-container-orgf861930" class="outline-4">
+<h4 id="orgf861930"><b>Neutral element</b>:</h4>
+<div class="outline-text-4" id="text-orgf861930">
 <p>
 <i>We define proposition <b>T</b> to be always <b>true</b> and <b>F</b> to be always <b>false</b></i><br />
 </p>
@@ -644,9 +645,9 @@ P ∨ F ⇔ P<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org5687242" class="outline-4">
-<h4 id="org5687242"><b>Negation of a conjunction &amp; a disjunction</b>:</h4>
-<div class="outline-text-4" id="text-org5687242">
+<div id="outline-container-org8cb6e02" class="outline-4">
+<h4 id="org8cb6e02"><b>Negation of a conjunction &amp; a disjunction</b>:</h4>
+<div class="outline-text-4" id="text-org8cb6e02">
 <p>
 Now we won&rsquo;t use bars here because my lazy ass doesn&rsquo;t know how, so instead I will use not()!!!<br />
 </p>
@@ -664,25 +665,25 @@ not(<b>P ∨ Q</b>) ⇔ P̅ ∧ Q̅<br />
 </p>
 </div>
 </div>
-<div id="outline-container-orge1d09c1" class="outline-4">
-<h4 id="orge1d09c1"><b>Transitivity</b>:</h4>
-<div class="outline-text-4" id="text-orge1d09c1">
+<div id="outline-container-orgfe01ac7" class="outline-4">
+<h4 id="orgfe01ac7"><b>Transitivity</b>:</h4>
+<div class="outline-text-4" id="text-orgfe01ac7">
 <p>
 [(P ⇒ Q) AND (Q ⇒ R)] ⇔ P ⇒ R<br />
 </p>
 </div>
 </div>
-<div id="outline-container-orgcbc82d0" class="outline-4">
-<h4 id="orgcbc82d0"><b>Contraposition</b>:</h4>
-<div class="outline-text-4" id="text-orgcbc82d0">
+<div id="outline-container-org976f527" class="outline-4">
+<h4 id="org976f527"><b>Contraposition</b>:</h4>
+<div class="outline-text-4" id="text-org976f527">
 <p>
 (P ⇒ Q) ⇔ (Q̅ ⇒ P̅)<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org41b3b67" class="outline-4">
-<h4 id="org41b3b67">God only knows what this property is called:</h4>
-<div class="outline-text-4" id="text-org41b3b67">
+<div id="outline-container-org0865f2b" class="outline-4">
+<h4 id="org0865f2b">God only knows what this property is called:</h4>
+<div class="outline-text-4" id="text-org0865f2b">
 <p>
 <i>If</i><br />
 </p>
@@ -709,17 +710,17 @@ Q is always true<br />
 </div>
 </div>
 </div>
-<div id="outline-container-org8339e2b" class="outline-3">
-<h3 id="org8339e2b">Some exercices I found online :</h3>
-<div class="outline-text-3" id="text-org8339e2b">
+<div id="outline-container-org316b141" class="outline-3">
+<h3 id="org316b141">Some exercices I found online :</h3>
+<div class="outline-text-3" id="text-org316b141">
 </div>
-<div id="outline-container-org4e164f4" class="outline-4">
-<h4 id="org4e164f4">USTHB 2022/2023 Section B :</h4>
-<div class="outline-text-4" id="text-org4e164f4">
+<div id="outline-container-orga3825f4" class="outline-4">
+<h4 id="orga3825f4">USTHB 2022/2023 Section B :</h4>
+<div class="outline-text-4" id="text-orga3825f4">
 </div>
 <ul class="org-ul">
-<li><a id="org1202cc7"></a>Exercice 1: Démontrer les équivalences suivantes:<br />
-<div class="outline-text-5" id="text-org1202cc7">
+<li><a id="orge27aa8d"></a>Exercice 1: Démontrer les équivalences suivantes:<br />
+<div class="outline-text-5" id="text-orge27aa8d">
 <ol class="org-ol">
 <li><p>
 (P ⇒ Q) ⇔ (Q̅ ⇒ P̅)<br />
@@ -773,8 +774,8 @@ Literally the same as above 🩷<br />
 </ol>
 </div>
 </li>
-<li><a id="org993b830"></a>Exercice 2: Dire si les propositions suivantes sont vraies ou fausses, et les nier:<br />
-<div class="outline-text-5" id="text-org993b830">
+<li><a id="orgd9c7023"></a>Exercice 2: Dire si les propositions suivantes sont vraies ou fausses, et les nier:<br />
+<div class="outline-text-5" id="text-orgd9c7023">
 <ol class="org-ol">
 <li><p>
 ∀x ∈ ℝ ,∃y ∈ ℝ*+, tels que e^x = y<br />
@@ -907,13 +908,13 @@ y + x &lt; 8<br />
 </div>
 </div>
 </div>
-<div id="outline-container-org966520a" class="outline-2">
-<h2 id="org966520a">2éme cours <i>Oct 2</i></h2>
-<div class="outline-text-2" id="text-org966520a">
+<div id="outline-container-org21d6c03" class="outline-2">
+<h2 id="org21d6c03">2éme cours <i>Oct 2</i></h2>
+<div class="outline-text-2" id="text-org21d6c03">
 </div>
-<div id="outline-container-orgafe4a7b" class="outline-3">
-<h3 id="orgafe4a7b">Quantifiers</h3>
-<div class="outline-text-3" id="text-orgafe4a7b">
+<div id="outline-container-orgd6c9f49" class="outline-3">
+<h3 id="orgd6c9f49">Quantifiers</h3>
+<div class="outline-text-3" id="text-orgd6c9f49">
 <p>
 A propriety P can depend on a parameter x<br />
 </p>
@@ -929,8 +930,8 @@ A propriety P can depend on a parameter x<br />
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="org11a2eef"></a>Example<br />
-<div class="outline-text-6" id="text-org11a2eef">
+<li><a id="orge92d880"></a>Example<br />
+<div class="outline-text-6" id="text-orge92d880">
 <p>
 P(x) : x+1≥0<br />
 </p>
@@ -941,13 +942,13 @@ P(X) is True or False depending on the values of x<br />
 </div>
 </li>
 </ul>
-<div id="outline-container-org5441c86" class="outline-4">
-<h4 id="org5441c86">Proprieties</h4>
-<div class="outline-text-4" id="text-org5441c86">
+<div id="outline-container-orgb332b43" class="outline-4">
+<h4 id="orgb332b43">Proprieties</h4>
+<div class="outline-text-4" id="text-orgb332b43">
 </div>
 <ul class="org-ul">
-<li><a id="org92d20b7"></a>Propriety Number 1:<br />
-<div class="outline-text-5" id="text-org92d20b7">
+<li><a id="org8587885"></a>Propriety Number 1:<br />
+<div class="outline-text-5" id="text-org8587885">
 <p>
 The negation of the universal quantifier is the existential quantifier, and vice-versa :<br />
 </p>
@@ -958,8 +959,8 @@ The negation of the universal quantifier is the existential quantifier, and vice
 </ul>
 </div>
 <ul class="org-ul">
-<li><a id="orgd155b7d"></a>Example:<br />
-<div class="outline-text-6" id="text-orgd155b7d">
+<li><a id="org3a19f5f"></a>Example:<br />
+<div class="outline-text-6" id="text-org3a19f5f">
 <p>
 ∀ x ≥ 1  x² &gt; 5 ⇔ ∃ x ≥ 1 x² &lt; 5<br />
 </p>
@@ -967,8 +968,8 @@ The negation of the universal quantifier is the existential quantifier, and vice
 </li>
 </ul>
 </li>
-<li><a id="orga5c524a"></a>Propriety Number 2:<br />
-<div class="outline-text-5" id="text-orga5c524a">
+<li><a id="orgab7b647"></a>Propriety Number 2:<br />
+<div class="outline-text-5" id="text-orgab7b647">
 <p>
 <b>∀x ∈ E, [P(x) ∧ Q(x)] ⇔ [∀ x ∈ E, P(x)] ∧ [∀ x ∈ E, Q(x)]</b><br />
 </p>
@@ -979,8 +980,8 @@ The propriety &ldquo;For any value of x from a set E , P(x) and Q(x)&rdquo; is e
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="orgfbd033f"></a>Example :<br />
-<div class="outline-text-6" id="text-orgfbd033f">
+<li><a id="org8ba49ff"></a>Example :<br />
+<div class="outline-text-6" id="text-org8ba49ff">
 <p>
 P(x) : sqrt(x) &gt; 0 ;  Q(x) : x ≥ 1<br />
 </p>
@@ -998,8 +999,8 @@ P(x) : sqrt(x) &gt; 0 ;  Q(x) : x ≥ 1<br />
 </li>
 </ul>
 </li>
-<li><a id="orgf25f95e"></a>Propriety Number 3:<br />
-<div class="outline-text-5" id="text-orgf25f95e">
+<li><a id="org91796f9"></a>Propriety Number 3:<br />
+<div class="outline-text-5" id="text-org91796f9">
 <p>
 <b>∃ x ∈ E, [P(x) ∧ Q(x)] <i>⇒</i> [∃ x ∈ E, P(x)] ∧ [∃ x ∈ E, Q(x)]</b><br />
 </p>
@@ -1010,8 +1011,8 @@ P(x) : sqrt(x) &gt; 0 ;  Q(x) : x ≥ 1<br />
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="org1eb9ad5"></a>Example of why it&rsquo;s NOT an equivalence :<br />
-<div class="outline-text-6" id="text-org1eb9ad5">
+<li><a id="org1f20a27"></a>Example of why it&rsquo;s NOT an equivalence :<br />
+<div class="outline-text-6" id="text-org1f20a27">
 <p>
 P(x) : x &gt; 5  ;  Q(x) : x &lt; 5<br />
 </p>
@@ -1024,8 +1025,8 @@ Of course there is no value of x such as its inferior and superior to 5 at the s
 </li>
 </ul>
 </li>
-<li><a id="org1b17eb0"></a>Propriety Number 4:<br />
-<div class="outline-text-5" id="text-org1b17eb0">
+<li><a id="org2b9f54b"></a>Propriety Number 4:<br />
+<div class="outline-text-5" id="text-org2b9f54b">
 <p>
 <b>[∀ x ∈ E, P(x)] ∨ [∀ x ∈ E, Q(x)] <i>⇒</i> ∀x ∈ E, [P(x) ∨ Q(x)]</b><br />
 </p>
@@ -1039,16 +1040,16 @@ Of course there is no value of x such as its inferior and superior to 5 at the s
 </ul>
 </div>
 </div>
-<div id="outline-container-orga224095" class="outline-3">
-<h3 id="orga224095">Multi-parameter proprieties :</h3>
-<div class="outline-text-3" id="text-orga224095">
+<div id="outline-container-orged685c1" class="outline-3">
+<h3 id="orged685c1">Multi-parameter proprieties :</h3>
+<div class="outline-text-3" id="text-orged685c1">
 <p>
 A propriety P can depend on two or more parameters, for convenience we call them x,y,z&#x2026;etc<br />
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="orgf04d41f"></a>Example :<br />
-<div class="outline-text-6" id="text-orgf04d41f">
+<li><a id="org747b217"></a>Example :<br />
+<div class="outline-text-6" id="text-org747b217">
 <p>
 P(x,y): x+y &gt; 0<br />
 </p>
@@ -1064,8 +1065,8 @@ P(-2,-1) is a False one<br />
 </p>
 </div>
 </li>
-<li><a id="orgb4df659"></a>WARNING :<br />
-<div class="outline-text-6" id="text-orgb4df659">
+<li><a id="org5d93eaf"></a>WARNING :<br />
+<div class="outline-text-6" id="text-org5d93eaf">
 <p>
 ∀x ∈ E, ∃y ∈ F , P(x,y)<br />
 </p>
@@ -1081,8 +1082,8 @@ Are different because in the first one y depends on x, while in the second one,
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="orge473c22"></a>Example :<br />
-<div class="outline-text-7" id="text-orge473c22">
+<li><a id="orgc60c61d"></a>Example :<br />
+<div class="outline-text-7" id="text-orgc60c61d">
 <p>
 ∀ x ∈ ℕ , ∃ y ∈ ℕ y &gt; x -&#x2013;&#x2014; True<br />
 </p>
@@ -1096,8 +1097,8 @@ Are different because in the first one y depends on x, while in the second one,
 </ul>
 </li>
 </ul>
-<li><a id="org5f7adfc"></a>Proprieties :<br />
-<div class="outline-text-5" id="text-org5f7adfc">
+<li><a id="orgda9f614"></a>Proprieties :<br />
+<div class="outline-text-5" id="text-orgda9f614">
 <ol class="org-ol">
 <li>not(∀x ∈ E ,∃y ∈ F P(x,y)) ⇔ ∃x ∈ E, ∀y ∈ F not(P(x,y))<br /></li>
 <li>not(∃x ∈ E ,∀y ∈ F P(x,y)) ⇔ ∀x ∈ E, ∃y ∈ F not(P(x,y))<br /></li>
@@ -1106,20 +1107,20 @@ Are different because in the first one y depends on x, while in the second one,
 </li>
 </ul>
 </div>
-<div id="outline-container-org019a7b1" class="outline-3">
-<h3 id="org019a7b1">Methods of mathematical reasoning :</h3>
-<div class="outline-text-3" id="text-org019a7b1">
+<div id="outline-container-org78d7ed0" class="outline-3">
+<h3 id="org78d7ed0">Methods of mathematical reasoning :</h3>
+<div class="outline-text-3" id="text-org78d7ed0">
 </div>
-<div id="outline-container-org235fea9" class="outline-4">
-<h4 id="org235fea9">Direct reasoning :</h4>
-<div class="outline-text-4" id="text-org235fea9">
+<div id="outline-container-org7d21c38" class="outline-4">
+<h4 id="org7d21c38">Direct reasoning :</h4>
+<div class="outline-text-4" id="text-org7d21c38">
 <p>
 To show that an implication P ⇒ Q is true, we suppose that P is true and we show that Q is true<br />
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="orgced11f5"></a>Example:<br />
-<div class="outline-text-5" id="text-orgced11f5">
+<li><a id="org59d34b3"></a>Example:<br />
+<div class="outline-text-5" id="text-org59d34b3">
 <p>
 Let a,b be two Real numbers, we have to prove that <b>a² + b² = 1 ⇒ |a + b| ≤ 2</b><br />
 </p>
@@ -1162,9 +1163,9 @@ a²+b²=1 ⇒ |a + b| ≤ 2 <b>Which is what we wanted to prove, therefor the im
 </li>
 </ul>
 </div>
-<div id="outline-container-orgae58c37" class="outline-4">
-<h4 id="orgae58c37">Reasoning by the Absurd:</h4>
-<div class="outline-text-4" id="text-orgae58c37">
+<div id="outline-container-orgcfd8723" class="outline-4">
+<h4 id="orgcfd8723">Reasoning by the Absurd:</h4>
+<div class="outline-text-4" id="text-orgcfd8723">
 <p>
 To prove that a proposition is True, we suppose that it&rsquo;s False and we must come to a contradiction<br />
 </p>
@@ -1175,8 +1176,8 @@ And to prove that an implication P ⇒ Q is true using the reasoning by the absu
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="org8dc4906"></a>Example:<br />
-<div class="outline-text-5" id="text-org8dc4906">
+<li><a id="orga4a0e2d"></a>Example:<br />
+<div class="outline-text-5" id="text-orga4a0e2d">
 <p>
 Prove that this proposition is correct using the reasoning by the absurd : ∀x ∈ ℝ* , sqrt(1+x²) ≠ 1 + x²/2<br />
 </p>
@@ -1194,17 +1195,17 @@ sqrt(1+x²) = 1 + x²/2 ; 1 + x² = (1+x²/2)² ; 1 + x² = 1 + x^4/4 + x²  ;
 </li>
 </ul>
 </div>
-<div id="outline-container-orgb7e7f5f" class="outline-4">
-<h4 id="orgb7e7f5f">Reasoning by contraposition:</h4>
-<div class="outline-text-4" id="text-orgb7e7f5f">
+<div id="outline-container-org102d3fa" class="outline-4">
+<h4 id="org102d3fa">Reasoning by contraposition:</h4>
+<div class="outline-text-4" id="text-org102d3fa">
 <p>
 If an implication P ⇒ Q is too hard to prove, we just have to prove not(Q) ⇒ not(P) is true !!! or in other words that both not(P) and not(Q) are true<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org2199fd0" class="outline-4">
-<h4 id="org2199fd0">Reasoning by counter example:</h4>
-<div class="outline-text-4" id="text-org2199fd0">
+<div id="outline-container-org81cb388" class="outline-4">
+<h4 id="org81cb388">Reasoning by counter example:</h4>
+<div class="outline-text-4" id="text-org81cb388">
 <p>
 To prove that a proposition ∀x ∈ E, P(x) is false, all we have to do is find a single value of x from E such as not(P(x)) is true<br />
 </p>
@@ -1212,20 +1213,20 @@ To prove that a proposition ∀x ∈ E, P(x) is false, all we have to do is find
 </div>
 </div>
 </div>
-<div id="outline-container-org97d10cc" class="outline-2">
-<h2 id="org97d10cc">3eme Cours : <i>Oct 9</i></h2>
-<div class="outline-text-2" id="text-org97d10cc">
+<div id="outline-container-orgc2178b8" class="outline-2">
+<h2 id="orgc2178b8">3eme Cours : <i>Oct 9</i></h2>
+<div class="outline-text-2" id="text-orgc2178b8">
 </div>
-<div id="outline-container-orgc324cd9" class="outline-4">
-<h4 id="orgc324cd9">Reasoning by recurrence :</h4>
-<div class="outline-text-4" id="text-orgc324cd9">
+<div id="outline-container-org4855f6f" class="outline-4">
+<h4 id="org4855f6f">Reasoning by recurrence :</h4>
+<div class="outline-text-4" id="text-org4855f6f">
 <p>
 P is a propriety dependent of <b>n ∈ ℕ</b>. If for n0 ∈ ℕ P(n0) is true, and if for n ≥ n0 (P(n) ⇒ P(n+1)) is true. Then P(n) is true for n ≥ n0<br />
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="org00a2b7b"></a>Example:<br />
-<div class="outline-text-5" id="text-org00a2b7b">
+<li><a id="orga792d9c"></a>Example:<br />
+<div class="outline-text-5" id="text-orga792d9c">
 <p>
 Let&rsquo;s prove that ∀ n ≥ 1 , (n,k=1)Σk = [n(n+1)]/2<br />
 </p>
@@ -1261,21 +1262,21 @@ For n ≥ 1. We assume that P(n) is true, OR : <b>(n, k=1)Σk = n(n+1)/2</b>. We
 </ul>
 </div>
 </div>
-<div id="outline-container-org924a736" class="outline-2">
-<h2 id="org924a736">4eme Cours : Chapitre 2 : Sets and Operations</h2>
-<div class="outline-text-2" id="text-org924a736">
+<div id="outline-container-orgde6bfac" class="outline-2">
+<h2 id="orgde6bfac">4eme Cours : Chapitre 2 : Sets and Operations</h2>
+<div class="outline-text-2" id="text-orgde6bfac">
 </div>
-<div id="outline-container-org9d2cb2d" class="outline-3">
-<h3 id="org9d2cb2d">Definition of a set :</h3>
-<div class="outline-text-3" id="text-org9d2cb2d">
+<div id="outline-container-orgfe8000a" class="outline-3">
+<h3 id="orgfe8000a">Definition of a set :</h3>
+<div class="outline-text-3" id="text-orgfe8000a">
 <p>
 A set is a collection of objects that share the sane propriety<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org3b107a4" class="outline-3">
-<h3 id="org3b107a4">Belonging, inclusion, and equality :</h3>
-<div class="outline-text-3" id="text-org3b107a4">
+<div id="outline-container-orgfe04671" class="outline-3">
+<h3 id="orgfe04671">Belonging, inclusion, and equality :</h3>
+<div class="outline-text-3" id="text-orgfe04671">
 <ol class="org-ol">
 <li>Let E be a set. If x is an element of E, we say that x belongs to E we write <b>x ∈ E</b>, and if it doesn&rsquo;t, we write <b>x ∉ E</b><br /></li>
 <li>A set E is included in a set F if all elements of E are elements of F and we write <b>E ⊂ F ⇔ (∀x , x ∈ E ⇒ x ∈ F)</b>. We say that E is a subset of F, or a part of F. The negation of this propriety is : <b>E ⊄ F ⇔ ∃x , x ∈ E and x ⊄ F</b><br /></li>
@@ -1284,13 +1285,13 @@ A set is a collection of objects that share the sane propriety<br />
 </ol>
 </div>
 </div>
-<div id="outline-container-orgbba2f2c" class="outline-3">
-<h3 id="orgbba2f2c">Intersections and reunions :</h3>
-<div class="outline-text-3" id="text-orgbba2f2c">
+<div id="outline-container-orga2eb99d" class="outline-3">
+<h3 id="orga2eb99d">Intersections and reunions :</h3>
+<div class="outline-text-3" id="text-orga2eb99d">
 </div>
-<div id="outline-container-org4fd2e61" class="outline-4">
-<h4 id="org4fd2e61">Intersection:</h4>
-<div class="outline-text-4" id="text-org4fd2e61">
+<div id="outline-container-org560d563" class="outline-4">
+<h4 id="org560d563">Intersection:</h4>
+<div class="outline-text-4" id="text-org560d563">
 <p>
 E ∩ F = {x / x ∈ E AND x ∈ F} ; x ∈ E ∩ F ⇔ x ∈ F AND x ∈ F<br />
 </p>
@@ -1301,9 +1302,9 @@ x ∉ E ∩ F ⇔ x ∉ E OR x ∉ F<br />
 </p>
 </div>
 </div>
-<div id="outline-container-orgabd991c" class="outline-4">
-<h4 id="orgabd991c">Union:</h4>
-<div class="outline-text-4" id="text-orgabd991c">
+<div id="outline-container-org7147bc3" class="outline-4">
+<h4 id="org7147bc3">Union:</h4>
+<div class="outline-text-4" id="text-org7147bc3">
 <p>
 E ∪ F = {x / x ∈ E OR x ∈ F} ;  x ∈ E ∪ F ⇔ x ∈ F OR x ∈ F<br />
 </p>
@@ -1314,17 +1315,17 @@ x ∉ E ∪ F ⇔ x ∉ E AND x ∉ F<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org083102e" class="outline-4">
-<h4 id="org083102e">Difference between two sets:</h4>
-<div class="outline-text-4" id="text-org083102e">
+<div id="outline-container-org16b5ab2" class="outline-4">
+<h4 id="org16b5ab2">Difference between two sets:</h4>
+<div class="outline-text-4" id="text-org16b5ab2">
 <p>
 E(Which is also written as : E - F) = {x / x ∈ E and x ∉ F}<br />
 </p>
 </div>
 </div>
-<div id="outline-container-orgcc1969e" class="outline-4">
-<h4 id="orgcc1969e">Complimentary set:</h4>
-<div class="outline-text-4" id="text-orgcc1969e">
+<div id="outline-container-orgdac190b" class="outline-4">
+<h4 id="orgdac190b">Complimentary set:</h4>
+<div class="outline-text-4" id="text-orgdac190b">
 <p>
 If F ⊂ E. E - F is the complimentary of F in E.<br />
 </p>
@@ -1335,52 +1336,52 @@ FCE = {x /x ∈ E AND x ∉ F} <b>ONLY WHEN F IS A SUBSET OF E</b><br />
 </p>
 </div>
 </div>
-<div id="outline-container-org72511ff" class="outline-4">
-<h4 id="org72511ff">Symmetrical difference</h4>
-<div class="outline-text-4" id="text-org72511ff">
+<div id="outline-container-org4e0b111" class="outline-4">
+<h4 id="org4e0b111">Symmetrical difference</h4>
+<div class="outline-text-4" id="text-org4e0b111">
 <p>
 E Δ F = (E - F) ∪ (F - E) ; = (E ∪ F) - (E ∩ F)<br />
 </p>
 </div>
 </div>
 </div>
-<div id="outline-container-org44b1b96" class="outline-3">
-<h3 id="org44b1b96">Proprieties :</h3>
-<div class="outline-text-3" id="text-org44b1b96">
+<div id="outline-container-org691c863" class="outline-3">
+<h3 id="org691c863">Proprieties :</h3>
+<div class="outline-text-3" id="text-org691c863">
 <p>
 Let E,F and G be 3 sets. We have :<br />
 </p>
 </div>
-<div id="outline-container-orga3eac79" class="outline-4">
-<h4 id="orga3eac79">Commutativity:</h4>
-<div class="outline-text-4" id="text-orga3eac79">
+<div id="outline-container-org9cc9f31" class="outline-4">
+<h4 id="org9cc9f31">Commutativity:</h4>
+<div class="outline-text-4" id="text-org9cc9f31">
 <p>
 E ∩ F = F ∩ E<br />
 E ∪ F = F ∪ E<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org1a9121a" class="outline-4">
-<h4 id="org1a9121a">Associativity:</h4>
-<div class="outline-text-4" id="text-org1a9121a">
+<div id="outline-container-org471083b" class="outline-4">
+<h4 id="org471083b">Associativity:</h4>
+<div class="outline-text-4" id="text-org471083b">
 <p>
 E ∩ (F ∩ G) = (E ∩ F) ∩ G<br />
 E ∪ (F ∪ G) = (E ∪ F) ∪ G<br />
 </p>
 </div>
 </div>
-<div id="outline-container-orgaf7fe3b" class="outline-4">
-<h4 id="orgaf7fe3b">Distributivity:</h4>
-<div class="outline-text-4" id="text-orgaf7fe3b">
+<div id="outline-container-orge63be10" class="outline-4">
+<h4 id="orge63be10">Distributivity:</h4>
+<div class="outline-text-4" id="text-orge63be10">
 <p>
 E ∩ (F ∪ G) = (E ∩ F) ∪ (E ∩ G)<br />
 E ∪ (F ∩ G) = (E ∪ F) ∩ (E ∪ G)<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org658b728" class="outline-4">
-<h4 id="org658b728">Lois de Morgan:</h4>
-<div class="outline-text-4" id="text-org658b728">
+<div id="outline-container-orgfb01947" class="outline-4">
+<h4 id="orgfb01947">Lois de Morgan:</h4>
+<div class="outline-text-4" id="text-orgfb01947">
 <p>
 If E ⊂ G and F ⊂ G ;<br />
 </p>
@@ -1390,33 +1391,33 @@ If E ⊂ G and F ⊂ G ;<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org4f0dd58" class="outline-4">
-<h4 id="org4f0dd58">An other one:</h4>
-<div class="outline-text-4" id="text-org4f0dd58">
+<div id="outline-container-orge1a41eb" class="outline-4">
+<h4 id="orge1a41eb">An other one:</h4>
+<div class="outline-text-4" id="text-orge1a41eb">
 <p>
 E - (F ∩ G) = (E-F) ∪ (E-G) ;  E - (F ∪ G) = (E-F) ∩ (E-G)<br />
 </p>
 </div>
 </div>
-<div id="outline-container-orgdd60033" class="outline-4">
-<h4 id="orgdd60033">An other one:</h4>
-<div class="outline-text-4" id="text-orgdd60033">
+<div id="outline-container-org9939b0f" class="outline-4">
+<h4 id="org9939b0f">An other one:</h4>
+<div class="outline-text-4" id="text-org9939b0f">
 <p>
 E ∩ ∅ = ∅ ; E ∪ ∅ = E<br />
 </p>
 </div>
 </div>
-<div id="outline-container-orgbf5feb1" class="outline-4">
-<h4 id="orgbf5feb1">And an other one:</h4>
-<div class="outline-text-4" id="text-orgbf5feb1">
+<div id="outline-container-org90bfdc4" class="outline-4">
+<h4 id="org90bfdc4">And an other one:</h4>
+<div class="outline-text-4" id="text-org90bfdc4">
 <p>
 E ∩ (F Δ G) = (E ∩ F) Δ (E ∩ G)<br />
 </p>
 </div>
 </div>
-<div id="outline-container-orgefabd47" class="outline-4">
-<h4 id="orgefabd47">And the last one:</h4>
-<div class="outline-text-4" id="text-orgefabd47">
+<div id="outline-container-org1e49001" class="outline-4">
+<h4 id="org1e49001">And the last one:</h4>
+<div class="outline-text-4" id="text-org1e49001">
 <p>
 E Δ ∅ = E ; E Δ E = ∅<br />
 </p>
@@ -1424,16 +1425,16 @@ E Δ ∅ = E ; E Δ E = ∅<br />
 </div>
 </div>
 </div>
-<div id="outline-container-orgc9ed06c" class="outline-2">
-<h2 id="orgc9ed06c">5eme cours: L&rsquo;ensemble des parties d&rsquo;un ensemble <i>Oct 16</i></h2>
-<div class="outline-text-2" id="text-orgc9ed06c">
+<div id="outline-container-org272eca3" class="outline-2">
+<h2 id="org272eca3">5eme cours: L&rsquo;ensemble des parties d&rsquo;un ensemble <i>Oct 16</i></h2>
+<div class="outline-text-2" id="text-org272eca3">
 <p>
 Let E be a set. We define P(E) as the set of all parts of E : <b>P(E) = {X/X ⊂ E}</b><br />
 </p>
 </div>
-<div id="outline-container-org7a1da3c" class="outline-4">
-<h4 id="org7a1da3c">Notes :</h4>
-<div class="outline-text-4" id="text-org7a1da3c">
+<div id="outline-container-org5b29e32" class="outline-4">
+<h4 id="org5b29e32">Notes :</h4>
+<div class="outline-text-4" id="text-org5b29e32">
 <p>
 ∅ ∈ P(E) ; E ∈ P(E)<br />
 </p>
@@ -1444,17 +1445,17 @@ cardinal E = n <i>The number of terms in E</i> , cardinal P(E) = 2^n <i>The numb
 </p>
 </div>
 </div>
-<div id="outline-container-orga6e5f8a" class="outline-4">
-<h4 id="orga6e5f8a">Examples :</h4>
-<div class="outline-text-4" id="text-orga6e5f8a">
+<div id="outline-container-org5636bd8" class="outline-4">
+<h4 id="org5636bd8">Examples :</h4>
+<div class="outline-text-4" id="text-org5636bd8">
 <p>
 E = {a,b,c} ; P(E)={∅, {a}, {b}, {c}, {a,b}, {b,c}, {a,c}, {a,b,c}}<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org7286ec5" class="outline-3">
-<h3 id="org7286ec5">Partition of a set :</h3>
-<div class="outline-text-3" id="text-org7286ec5">
+<div id="outline-container-orgd8cb2c3" class="outline-3">
+<h3 id="orgd8cb2c3">Partition of a set :</h3>
+<div class="outline-text-3" id="text-orgd8cb2c3">
 <p>
 We say that <b>A</b> is a partition of E if:<br />
 </p>
@@ -1465,16 +1466,16 @@ We say that <b>A</b> is a partition of E if:<br />
 </ol>
 </div>
 </div>
-<div id="outline-container-orgd8e00ac" class="outline-3">
-<h3 id="orgd8e00ac">Cartesian products :</h3>
-<div class="outline-text-3" id="text-orgd8e00ac">
+<div id="outline-container-orgf40404d" class="outline-3">
+<h3 id="orgf40404d">Cartesian products :</h3>
+<div class="outline-text-3" id="text-orgf40404d">
 <p>
 Let E and F be two sets, the set EXF = {(x,y)/ x ∈ E AND y ∈ F} is called the Cartesian product of E and F<br />
 </p>
 </div>
-<div id="outline-container-orgdb491ee" class="outline-4">
-<h4 id="orgdb491ee">Example :</h4>
-<div class="outline-text-4" id="text-orgdb491ee">
+<div id="outline-container-orgd526cb8" class="outline-4">
+<h4 id="orgd526cb8">Example :</h4>
+<div class="outline-text-4" id="text-orgd526cb8">
 <p>
 A = {4,5} ; B= {4,5,6} ; AxB = {(4,4), (4,5), (4,6), (5,4), (5,5), (5,6)}<br />
 </p>
@@ -1485,9 +1486,9 @@ BxA = {(4,4), (4,5), (5,4), (5,5), (6,4), (6,5)} ; Therefore AxB ≠ BxA<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org28c23b2" class="outline-4">
-<h4 id="org28c23b2">Some proprieties:</h4>
-<div class="outline-text-4" id="text-org28c23b2">
+<div id="outline-container-org56dd088" class="outline-4">
+<h4 id="org56dd088">Some proprieties:</h4>
+<div class="outline-text-4" id="text-org56dd088">
 <ol class="org-ol">
 <li>ExF = ∅ ⇔ E=∅ OR F=∅<br /></li>
 <li>ExF = FxE ⇔ E=F OR E=∅ OR F=∅<br /></li>
@@ -1500,21 +1501,21 @@ BxA = {(4,4), (4,5), (5,4), (5,5), (6,4), (6,5)} ; Therefore AxB ≠ BxA<br />
 </div>
 </div>
 </div>
-<div id="outline-container-orgfdbe4f3" class="outline-2">
-<h2 id="orgfdbe4f3">Binary relations in a set :</h2>
-<div class="outline-text-2" id="text-orgfdbe4f3">
+<div id="outline-container-org5ee4278" class="outline-2">
+<h2 id="org5ee4278">Binary relations in a set :</h2>
+<div class="outline-text-2" id="text-org5ee4278">
 </div>
-<div id="outline-container-org3696656" class="outline-3">
-<h3 id="org3696656">Definition :</h3>
-<div class="outline-text-3" id="text-org3696656">
+<div id="outline-container-orgddc9af6" class="outline-3">
+<h3 id="orgddc9af6">Definition :</h3>
+<div class="outline-text-3" id="text-orgddc9af6">
 <p>
 Let E be a set and x,y ∈ E. If there exists a link between x and y, we say that they are tied by a relation <b>R</b> and we write <b>xRy</b><br />
 </p>
 </div>
 </div>
-<div id="outline-container-orgd32f673" class="outline-3">
-<h3 id="orgd32f673">Proprieties :</h3>
-<div class="outline-text-3" id="text-orgd32f673">
+<div id="outline-container-orge65424e" class="outline-3">
+<h3 id="orge65424e">Proprieties :</h3>
+<div class="outline-text-3" id="text-orge65424e">
 <p>
 Let E be a set and R a relation defined in E<br />
 </p>
@@ -1526,16 +1527,16 @@ Let E be a set and R a relation defined in E<br />
 </ol>
 </div>
 </div>
-<div id="outline-container-org22f460a" class="outline-3">
-<h3 id="org22f460a">Equivalence relationship :</h3>
-<div class="outline-text-3" id="text-org22f460a">
+<div id="outline-container-orgd7877d3" class="outline-3">
+<h3 id="orgd7877d3">Equivalence relationship :</h3>
+<div class="outline-text-3" id="text-orgd7877d3">
 <p>
 We say that R is a relation of equivalence in E if its reflexive, symetrical and transitive<br />
 </p>
 </div>
-<div id="outline-container-org68ddde2" class="outline-4">
-<h4 id="org68ddde2">Equivalence class :</h4>
-<div class="outline-text-4" id="text-org68ddde2">
+<div id="outline-container-org85cf025" class="outline-4">
+<h4 id="org85cf025">Equivalence class :</h4>
+<div class="outline-text-4" id="text-org85cf025">
 <p>
 Let R be a relation of equivalence in E and a ∈ E, we call equivalence class of <b>a</b>, and we write ̅a or ȧ, or cl a the following set :<br />
 </p>
@@ -1546,8 +1547,8 @@ Let R be a relation of equivalence in E and a ∈ E, we call equivalence class o
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="org431774d"></a>The quotient set :<br />
-<div class="outline-text-5" id="text-org431774d">
+<li><a id="orga316a01"></a>The quotient set :<br />
+<div class="outline-text-5" id="text-orga316a01">
 <p>
 E/R = {̅a , a ∈ E}<br />
 </p>
@@ -1556,9 +1557,9 @@ E/R = {̅a , a ∈ E}<br />
 </ul>
 </div>
 </div>
-<div id="outline-container-orge976c7e" class="outline-3">
-<h3 id="orge976c7e">Order relationship :</h3>
-<div class="outline-text-3" id="text-orge976c7e">
+<div id="outline-container-orge18dcc7" class="outline-3">
+<h3 id="orge18dcc7">Order relationship :</h3>
+<div class="outline-text-3" id="text-orge18dcc7">
 <p>
 Let E be a set and R be a relation defined in E. We say that R is a relation of order if its reflexive, anti-symetrical and transitive.<br />
 </p>
@@ -1567,9 +1568,9 @@ Let E be a set and R be a relation defined in E. We say that R is a relation of
 <li>The order R is called partial if ∃ x,y ∈ E xR̅y AND yR̅x<br /></li>
 </ol>
 </div>
-<div id="outline-container-org1f19847" class="outline-4">
-<h4 id="org1f19847"><span class="todo TODO">TODO</span> Examples :</h4>
-<div class="outline-text-4" id="text-org1f19847">
+<div id="outline-container-org60d471a" class="outline-4">
+<h4 id="org60d471a"><span class="todo TODO">TODO</span> Examples :</h4>
+<div class="outline-text-4" id="text-org60d471a">
 <p>
 ∀x,y ∈ ℝ , xRy ⇔ x²-y²=x-y<br />
 </p>
@@ -1581,17 +1582,17 @@ Let E be a set and R be a relation defined in E. We say that R is a relation of
 </div>
 </div>
 </div>
-<div id="outline-container-orgc956a73" class="outline-2">
-<h2 id="orgc956a73">TP exercices <i>Oct 20</i> :</h2>
-<div class="outline-text-2" id="text-orgc956a73">
+<div id="outline-container-org77de6e3" class="outline-2">
+<h2 id="org77de6e3">TP exercices <i>Oct 20</i> :</h2>
+<div class="outline-text-2" id="text-org77de6e3">
 </div>
-<div id="outline-container-org15b0e75" class="outline-3">
-<h3 id="org15b0e75">Exercice 3 :</h3>
-<div class="outline-text-3" id="text-org15b0e75">
+<div id="outline-container-org3ca8006" class="outline-3">
+<h3 id="org3ca8006">Exercice 3 :</h3>
+<div class="outline-text-3" id="text-org3ca8006">
 </div>
-<div id="outline-container-orgb132892" class="outline-4">
-<h4 id="orgb132892">Question 3</h4>
-<div class="outline-text-4" id="text-orgb132892">
+<div id="outline-container-orgad95ec3" class="outline-4">
+<h4 id="orgad95ec3">Question 3</h4>
+<div class="outline-text-4" id="text-orgad95ec3">
 <p>
 Montrer par l&rsquo;absurde que P : ∀x ∈ ℝ*, √(4+x³) ≠ 2 + x³/4 est vraies<br />
 </p>
@@ -1608,13 +1609,13 @@ x = 0 . Or, x appartiens a ℝ\{0}, donc P̅ est fausse. Ce qui est equivalent a
 </div>
 </div>
 </div>
-<div id="outline-container-org9a4006b" class="outline-3">
-<h3 id="org9a4006b">Exercice 4 :</h3>
-<div class="outline-text-3" id="text-org9a4006b">
+<div id="outline-container-org8180ae0" class="outline-3">
+<h3 id="org8180ae0">Exercice 4 :</h3>
+<div class="outline-text-3" id="text-org8180ae0">
 </div>
-<div id="outline-container-org43cf6d6" class="outline-4">
-<h4 id="org43cf6d6"><span class="done DONE">DONE</span> Question 1 :</h4>
-<div class="outline-text-4" id="text-org43cf6d6">
+<div id="outline-container-orgfe0b1e2" class="outline-4">
+<h4 id="orgfe0b1e2"><span class="done DONE">DONE</span> Question 1 :</h4>
+<div class="outline-text-4" id="text-orgfe0b1e2">
 <p class="verse">
 ∀ n ∈ ℕ* , (n ,k=1)Σ1/k(k+1) = 1 - 1/1+n<br />
 P(n) : (n ,k=1)Σ1/k(k+1) = 1 - 1/1+n<br />
@@ -1642,17 +1643,17 @@ De (a) et (b) on conclus que la proposition de départ est vraie<br />
 </div>
 </div>
 </div>
-<div id="outline-container-org429ab91" class="outline-2">
-<h2 id="org429ab91">Chapter 3 : Applications</h2>
-<div class="outline-text-2" id="text-org429ab91">
+<div id="outline-container-org2d6e0ba" class="outline-2">
+<h2 id="org2d6e0ba">Chapter 3 : Applications</h2>
+<div class="outline-text-2" id="text-org2d6e0ba">
 </div>
-<div id="outline-container-org4a4b3cf" class="outline-3">
-<h3 id="org4a4b3cf">3.1 Generalities about applications :</h3>
-<div class="outline-text-3" id="text-org4a4b3cf">
+<div id="outline-container-orga5be12f" class="outline-3">
+<h3 id="orga5be12f">3.1 Generalities about applications :</h3>
+<div class="outline-text-3" id="text-orga5be12f">
 </div>
-<div id="outline-container-org0cac0c6" class="outline-4">
-<h4 id="org0cac0c6">Definition :</h4>
-<div class="outline-text-4" id="text-org0cac0c6">
+<div id="outline-container-org805d7bc" class="outline-4">
+<h4 id="org805d7bc">Definition :</h4>
+<div class="outline-text-4" id="text-org805d7bc">
 <p>
 Let E and F be two sets.<br />
 </p>
@@ -1674,10 +1675,10 @@ f : E &#x2014;&gt; F<br />
 </ol>
 </div>
 <ul class="org-ul">
-<li><a id="org1570343"></a>Some examples :<br />
+<li><a id="org2936c19"></a>Some examples :<br />
 <ul class="org-ul">
-<li><a id="orgdafc0e8"></a>Ex1:<br />
-<div class="outline-text-6" id="text-orgdafc0e8">
+<li><a id="orgd77c836"></a>Ex1:<br />
+<div class="outline-text-6" id="text-orgd77c836">
 <p class="verse">
 f : ℝ &#x2014;&gt; ℝ<br />
 &#xa0;&#xa0;&#xa0;&#xa0;x &#x2014;&gt; f(x) = (x-1)/x<br />
@@ -1685,8 +1686,8 @@ is a function, because 0 does NOT have a corresponding element using that relati
 </p>
 </div>
 </li>
-<li><a id="orgcc5e730"></a>Ex2:<br />
-<div class="outline-text-6" id="text-orgcc5e730">
+<li><a id="orga45fd32"></a>Ex2:<br />
+<div class="outline-text-6" id="text-orga45fd32">
 <p class="verse">
 f : ℝ<sup>*</sup> &#x2014;&gt; ℝ<br />
 &#xa0;&#xa0;&#xa0;&#xa0;x &#x2014;&gt; f(x)= (x-1)/x<br />
@@ -1698,9 +1699,9 @@ is, however, an application<br />
 </li>
 </ul>
 </div>
-<div id="outline-container-orgc048e93" class="outline-4">
-<h4 id="orgc048e93">Restriction and prolongation of an application :</h4>
-<div class="outline-text-4" id="text-orgc048e93">
+<div id="outline-container-org7947331" class="outline-4">
+<h4 id="org7947331">Restriction and prolongation of an application :</h4>
+<div class="outline-text-4" id="text-org7947331">
 <p>
 Let f : E -&gt; F an application and E<sub>1</sub> ⊂ E therefore :<br />
 </p>
@@ -1712,8 +1713,8 @@ g is called the <b>restriction</b> of f to E<sub>1</sub>. And f is called the <b
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="org771da73"></a>Example<br />
-<div class="outline-text-5" id="text-org771da73">
+<li><a id="org7c848c6"></a>Example<br />
+<div class="outline-text-5" id="text-org7c848c6">
 <p class="verse">
 f : ℝ &#x2014;&gt; ℝ<br />
 &#xa0;&#xa0;&#xa0;&#xa0;x &#x2014;&gt; f(x) = x<sup>2</sup><br />
@@ -1727,9 +1728,9 @@ g is called the <b>restriction</b> of f to ℝ^{</del>}. And f is called the <b>
 </li>
 </ul>
 </div>
-<div id="outline-container-org8e61361" class="outline-4">
-<h4 id="org8e61361">Composition of applications :</h4>
-<div class="outline-text-4" id="text-org8e61361">
+<div id="outline-container-orgd94bc69" class="outline-4">
+<h4 id="orgd94bc69">Composition of applications :</h4>
+<div class="outline-text-4" id="text-orgd94bc69">
 <p>
 Let E,F, and G be three sets, f: E -&gt; F and g: F -&gt; G are two applications. We define their composition, symbolized by g<sub>o</sub>f as follow :<br />
 </p>
@@ -1741,9 +1742,9 @@ g<sub>o</sub>f : E -&gt; G . ∀x ∈ E (g<sub>o</sub>f)<sub>(x)</sub>= g(f(x))<
 </div>
 </div>
 </div>
-<div id="outline-container-org5c096db" class="outline-3">
-<h3 id="org5c096db">3.2 Injection, surjection and bijection :</h3>
-<div class="outline-text-3" id="text-org5c096db">
+<div id="outline-container-org257d05a" class="outline-3">
+<h3 id="org257d05a">3.2 Injection, surjection and bijection :</h3>
+<div class="outline-text-3" id="text-org257d05a">
 <p>
 Let f: E -&gt; F be an application :<br />
 </p>
@@ -1753,9 +1754,9 @@ Let f: E -&gt; F be an application :<br />
 <li>We say that if is bijective if it&rsquo;s both injective and surjective at the same time.<br /></li>
 </ol>
 </div>
-<div id="outline-container-org4162b56" class="outline-4">
-<h4 id="org4162b56">Proposition :</h4>
-<div class="outline-text-4" id="text-org4162b56">
+<div id="outline-container-org1612e09" class="outline-4">
+<h4 id="org1612e09">Proposition :</h4>
+<div class="outline-text-4" id="text-org1612e09">
 <p>
 Let f : E -&gt; F be an application. Therefore:<br />
 </p>
@@ -1767,21 +1768,21 @@ Let f : E -&gt; F be an application. Therefore:<br />
 </div>
 </div>
 </div>
-<div id="outline-container-org736de6c" class="outline-3">
-<h3 id="org736de6c">3.3 Reciprocal applications :</h3>
-<div class="outline-text-3" id="text-org736de6c">
+<div id="outline-container-orgebdf518" class="outline-3">
+<h3 id="orgebdf518">3.3 Reciprocal applications :</h3>
+<div class="outline-text-3" id="text-orgebdf518">
 </div>
-<div id="outline-container-orgafb7f85" class="outline-4">
-<h4 id="orgafb7f85">Def :</h4>
-<div class="outline-text-4" id="text-orgafb7f85">
+<div id="outline-container-orgf072e42" class="outline-4">
+<h4 id="orgf072e42">Def :</h4>
+<div class="outline-text-4" id="text-orgf072e42">
 <p>
 Let f : E -&gt; F a bijective application. So there exists an application named f<sup>-1</sup> : F -&gt; E such as : y = f(x) ⇔ x = f<sup>-1</sup>(y)<br />
 </p>
 </div>
 </div>
-<div id="outline-container-orgec3a3d6" class="outline-4">
-<h4 id="orgec3a3d6">Theorem :</h4>
-<div class="outline-text-4" id="text-orgec3a3d6">
+<div id="outline-container-org244b352" class="outline-4">
+<h4 id="org244b352">Theorem :</h4>
+<div class="outline-text-4" id="text-org244b352">
 <p>
 Let f : E -&gt; F be a bijective application. Therefore its reciprocal f<sup>-1</sup> verifies : f<sup>-1</sup><sub>o</sub>f=Id<sub>E </sub>; f<sub>o</sub>f<sup>-1</sup>=Id<sub>F</sub> Or :<br />
 </p>
@@ -1792,9 +1793,9 @@ Id<sub>E</sub> : E -&gt; E ; x -&gt; Id<sub>E</sub>(x) = x<br />
 </p>
 </div>
 </div>
-<div id="outline-container-org940e2d6" class="outline-4">
-<h4 id="org940e2d6">Some proprieties :</h4>
-<div class="outline-text-4" id="text-org940e2d6">
+<div id="outline-container-org1479c0e" class="outline-4">
+<h4 id="org1479c0e">Some proprieties :</h4>
+<div class="outline-text-4" id="text-org1479c0e">
 <ol class="org-ol">
 <li>(f<sup>-1</sup>)<sup>-1</sup> = f<br /></li>
 <li>(g<sub>o</sub>f)⁻¹ = f⁻¹<sub>o</sub>g⁻¹<br /></li>
@@ -1803,13 +1804,13 @@ Id<sub>E</sub> : E -&gt; E ; x -&gt; Id<sub>E</sub>(x) = x<br />
 </div>
 </div>
 </div>
-<div id="outline-container-org2d173c2" class="outline-3">
-<h3 id="org2d173c2">3.4 Direct Image and reciprocal Image :</h3>
-<div class="outline-text-3" id="text-org2d173c2">
+<div id="outline-container-orgaf81bb3" class="outline-3">
+<h3 id="orgaf81bb3">3.4 Direct Image and reciprocal Image :</h3>
+<div class="outline-text-3" id="text-orgaf81bb3">
 </div>
-<div id="outline-container-org769c809" class="outline-4">
-<h4 id="org769c809">Direct Image :</h4>
-<div class="outline-text-4" id="text-org769c809">
+<div id="outline-container-org87b91e2" class="outline-4">
+<h4 id="org87b91e2">Direct Image :</h4>
+<div class="outline-text-4" id="text-org87b91e2">
 <p>
 Let f: E-&gt; F be an application and A ⊂ E. We call a direct image of A by f, and we symbolize as f(A) the subset of F defined by :<br />
 </p>
@@ -1820,8 +1821,8 @@ f(A) = {f(x)/ x ∈ A} ; = { y ∈ F ∃ x ∈ A  y=f(x)}<br />
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="org492a9ac"></a>Example :<br />
-<div class="outline-text-5" id="text-org492a9ac">
+<li><a id="orgb5bc08c"></a>Example :<br />
+<div class="outline-text-5" id="text-orgb5bc08c">
 <p class="verse">
 f: ℝ -&gt; ℝ<br />
 &#xa0;&#xa0;&#xa0;x -&gt; f(x) = x²<br />
@@ -1832,9 +1833,9 @@ f(A) = {f(0), f(4)} = {0, 16}<br />
 </li>
 </ul>
 </div>
-<div id="outline-container-org7d705d3" class="outline-4">
-<h4 id="org7d705d3">Reciprocal image :</h4>
-<div class="outline-text-4" id="text-org7d705d3">
+<div id="outline-container-org500bc40" class="outline-4">
+<h4 id="org500bc40">Reciprocal image :</h4>
+<div class="outline-text-4" id="text-org500bc40">
 <p>
 Let f: E -&gt; F be an application and B ⊂ F. We call the reciprocal image of E by F the subset f<sup>-1</sup>(B) :<br />
 </p>
@@ -1845,8 +1846,8 @@ f<sup>-1</sup>(B) = {x ∈ E/f(x) ∈ B} ; x ∈ f<sup>-1</sup>(B) ⇔ f(x) ∈
 </p>
 </div>
 <ul class="org-ul">
-<li><a id="org686c1dc"></a>Example :<br />
-<div class="outline-text-5" id="text-org686c1dc">
+<li><a id="org885d21d"></a>Example :<br />
+<div class="outline-text-5" id="text-org885d21d">
 <p class="verse">
 f: ℝ -&gt; ℝ<br />
 &#xa0;&#xa0;&#xa0;x -&gt; f(x) = x²<br />
@@ -1863,7 +1864,7 @@ f<sup>-1</sup>(B) = {1,-1,2,-2,3,-3}<br />
 </div>
 <div id="postamble" class="status">
 <p class="author">Author: Crystal</p>
-<p class="date">Created: 2023-10-23 Mon 19:39</p>
+<p class="date">Created: 2023-11-01 Wed 20:17</p>
 </div>
 </body>
 </html>
\ No newline at end of file