summary refs log tree commit diff stats
path: root/uni_notes/algebra.html
diff options
context:
space:
mode:
Diffstat (limited to 'uni_notes/algebra.html')
-rwxr-xr-xuni_notes/algebra.html1295
1 files changed, 1295 insertions, 0 deletions
diff --git a/uni_notes/algebra.html b/uni_notes/algebra.html
new file mode 100755
index 0000000..27c8d76
--- /dev/null
+++ b/uni_notes/algebra.html
@@ -0,0 +1,1295 @@
+<?xml version="1.0" encoding="utf-8"?>
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
+"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
+<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
+<head>
+<!-- 2023-10-11 Wed 19:04 -->
+<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
+<meta name="viewport" content="width=device-width, initial-scale=1" />
+<title>Algebra 1</title>
+<meta name="author" content="Crystal" />
+<meta name="generator" content="Org Mode" />
+<link rel="stylesheet" type="text/css" href="../src/css/colors.css"/>
+<link rel="stylesheet" type="text/css" href="../src/css/style.css"/>
+<script>
+  window.MathJax = {
+    tex: {
+      ams: {
+        multlineWidth: '85%'
+      },
+      tags: 'ams',
+      tagSide: 'right',
+      tagIndent: '.8em'
+    },
+    chtml: {
+      scale: 1.0,
+      displayAlign: 'center',
+      displayIndent: '0em'
+    },
+    svg: {
+      scale: 1.0,
+      displayAlign: 'center',
+      displayIndent: '0em'
+    },
+    output: {
+      font: 'mathjax-modern',
+      displayOverflow: 'overflow'
+    }
+  };
+</script>
+
+<script
+  id="MathJax-script"
+  async
+  src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js">
+</script>
+</head>
+<body>
+<div id="content" class="content">
+<h1 class="title">Algebra 1</h1>
+<div id="outline-container-orgcc5f4d8" class="outline-2">
+<h2 id="orgcc5f4d8">Contenu de la Matiére</h2>
+<div class="outline-text-2" id="text-orgcc5f4d8">
+</div>
+<div id="outline-container-orgf4040f2" class="outline-3">
+<h3 id="orgf4040f2">Rappels et compléments (11H)</h3>
+<div class="outline-text-3" id="text-orgf4040f2">
+<ul class="org-ul">
+<li>Logique mathématique et méthodes du raisonnement mathématique</li>
+<li>Ensembles et Relations</li>
+<li>Applications</li>
+</ul>
+</div>
+</div>
+<div id="outline-container-orge74cdc9" class="outline-3">
+<h3 id="orge74cdc9">Structures Algébriques (11H)</h3>
+<div class="outline-text-3" id="text-orge74cdc9">
+<ul class="org-ul">
+<li>Groupes et morphisme de groupes</li>
+<li>Anneaux et morphisme d&rsquo;anneaux</li>
+<li>Les corps</li>
+</ul>
+</div>
+</div>
+<div id="outline-container-org0b54650" class="outline-3">
+<h3 id="org0b54650">Polynômes et fractions rationnelles</h3>
+<div class="outline-text-3" id="text-org0b54650">
+<ul class="org-ul">
+<li>Notion du polynôme à une indéterminée á coefficients dans un anneau</li>
+<li>Opérations Algébriques sur les polynômes</li>
+<li>Arithmétique dans l&rsquo;anneau des polynômes</li>
+<li>Polynôme dérivé et formule de Taylor</li>
+<li>Notion de racine d&rsquo;un polynôme</li>
+<li>Notion de Fraction rationelle á une indéterminée</li>
+<li>Décomposition des fractions rationelles en éléments simples</li>
+</ul>
+</div>
+</div>
+</div>
+<div id="outline-container-org9dbc8bb" class="outline-2">
+<h2 id="org9dbc8bb">Premier cours : Logique mathématique et méthodes du raisonnement mathématique <i>Sep 25</i> :</h2>
+<div class="outline-text-2" id="text-org9dbc8bb">
+<p>
+Let <b>P</b> <b>Q</b> and <b>R</b> be propositions which can either be <b>True</b> or <b>False</b>. And let&rsquo;s also give the value <b>1</b> to each <b>True</b> proposition and <b>0</b> to each false one.
+</p>
+
+<p>
+<i>Ex:</i>
+</p>
+<ul class="org-ul">
+<li><b>5 ≥ 2</b> is a proposition, a correct one !!!</li>
+<li><b>The webmaster is a girl</b> is also a proposition, which is also correct.</li>
+<li><b>x is always bigger than 5</b> is <b>not</b> a proposition, because we CAN&rsquo;T determine if it&rsquo;s correct or not as <b>x</b> changes.</li>
+</ul>
+<p>
+&#x2026;etc
+</p>
+
+<p>
+In order to avoid repetition, and rewriting the proposition over and over, we just assign a capital letter to them such as <b>P Q</b> or <b>R</b>.
+</p>
+
+<p>
+So now we could write :
+<b>Let the proposition P be 5 ≥ 2, we notice that P is always True, therefor its validity is 1</b>
+</p>
+
+<p>
+We also have the opposite of <b>P</b>, which is <b>not(P)</b> but for simplicity we use <b>P̅</b> (A P with a bar on top, in case it doesn&rsquo;t load for you), now let&rsquo;s go back to the previous example:
+</p>
+
+<p>
+<b>Since we know that the proposition P is true, we can conclude that P̅ is false. As P and P̅ can NOT be true at the same time. It&rsquo;s like saying 5 is greater and also lesser than 2&#x2026;doesn&rsquo;t make sense, does it ?</b>
+</p>
+
+<p>
+Now let&rsquo;s say we have two propositions, and we want to test the validity of their disjunction&#x2026;.. Okay what is this &ldquo;disjunction&rdquo; ? <b>Great Question Billy !!!</b> A disjunction is true if either propositions are true
+</p>
+
+<p>
+Ex:
+<b>Let proposition P be &ldquo;The webmaster is asleep&rdquo;, and Q be &ldquo;The reader loves pufferfishes&rdquo;. The disjunction of these two propositions can have 4 different values showed in this Table of truth (such a badass name):</b>
+</p>
+
+<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
+
+
+<colgroup>
+<col  class="org-right" />
+
+<col  class="org-right" />
+
+<col  class="org-right" />
+</colgroup>
+<thead>
+<tr>
+<th scope="col" class="org-right">P</th>
+<th scope="col" class="org-right">Q</th>
+<th scope="col" class="org-right">Disjunction</th>
+</tr>
+</thead>
+<tbody>
+<tr>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+</tr>
+
+<tr>
+<td class="org-right">1</td>
+<td class="org-right">0</td>
+<td class="org-right">1</td>
+</tr>
+
+<tr>
+<td class="org-right">0</td>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+</tr>
+
+<tr>
+<td class="org-right">0</td>
+<td class="org-right">0</td>
+<td class="org-right">0</td>
+</tr>
+</tbody>
+</table>
+
+<p>
+<i>What the hell is this ?</i>
+The first colomn is equivalent to saying : &ldquo;The webmaster is asleep AND The reader loves pufferfishes&rdquo;
+The second one means : &ldquo;The webmaster is asleep AND The reader DOESN&rsquo;T love pufferfishes (if you are in this case, then <b>I HATE YOU</b>)&rdquo;
+The third one&#x2026; <i>zzzzzzz</i>
+</p>
+
+<p>
+You got the idea !!!
+And since we are talking about a disjunction here, <b>one of the propositions</b> need to be true in order for this disjunction to be true.
+</p>
+
+<p>
+You may be wondering&#x2026;. Crystal, can&rsquo;t we write a disjunction in magical math symbols ? And to this I respond with a big <b>YES</b>. A disjunction is symbolized by a <b>∨</b> . So the disjunction between proposition <b>P &amp; Q</b> can be written this way : <b>P ∨ Q</b>
+</p>
+
+<p>
+What if, we want to test whether or not two propositions are true AT THE SAME TIME ? Long story short, we can, it&rsquo;s called a conjunction, same concept, as before, only this time the symbol is <b>P ∧ Q</b>, and is only true if <b>P</b> and <b>Q</b> are true. So we get a Table like this :
+</p>
+
+<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
+
+
+<colgroup>
+<col  class="org-right" />
+
+<col  class="org-right" />
+
+<col  class="org-right" />
+
+<col  class="org-right" />
+</colgroup>
+<thead>
+<tr>
+<th scope="col" class="org-right">P</th>
+<th scope="col" class="org-right">Q</th>
+<th scope="col" class="org-right">P ∨ Q</th>
+<th scope="col" class="org-right">P ∧ Q</th>
+</tr>
+</thead>
+<tbody>
+<tr>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+</tr>
+
+<tr>
+<td class="org-right">1</td>
+<td class="org-right">0</td>
+<td class="org-right">1</td>
+<td class="org-right">0</td>
+</tr>
+
+<tr>
+<td class="org-right">0</td>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+<td class="org-right">0</td>
+</tr>
+
+<tr>
+<td class="org-right">0</td>
+<td class="org-right">0</td>
+<td class="org-right">0</td>
+<td class="org-right">0</td>
+</tr>
+</tbody>
+</table>
+
+<p>
+<b>Always remember: 1 means true and 0 means false</b>
+</p>
+
+<p>
+There are two more basics to cover here before going to some properties, the first one is implication symbolized by the double arrow <b>⇒</b>
+</p>
+
+<p>
+Implication is kinda hard for my little brain to explain, so I will just say what it means:
+</p>
+
+<p>
+<b>If P implies Q, this means that either Q, or the opposite of P are correct</b>
+</p>
+
+<p>
+or in math terms
+</p>
+
+<p>
+<b>P ⇒ Q translates to P̅ ∨ Q</b>
+Let&rsquo;s illustrate :
+</p>
+
+<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
+
+
+<colgroup>
+<col  class="org-right" />
+
+<col  class="org-right" />
+
+<col  class="org-right" />
+
+<col  class="org-right" />
+
+<col  class="org-right" />
+
+<col  class="org-right" />
+
+<col  class="org-right" />
+</colgroup>
+<thead>
+<tr>
+<th scope="col" class="org-right">P</th>
+<th scope="col" class="org-right">Q</th>
+<th scope="col" class="org-right">P̅</th>
+<th scope="col" class="org-right">Q̅</th>
+<th scope="col" class="org-right">P ∨ Q</th>
+<th scope="col" class="org-right">P ∧ Q</th>
+<th scope="col" class="org-right">P ⇒ Q (P̅ ∨ Q)</th>
+</tr>
+</thead>
+<tbody>
+<tr>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+<td class="org-right">0</td>
+<td class="org-right">0</td>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+</tr>
+
+<tr>
+<td class="org-right">1</td>
+<td class="org-right">0</td>
+<td class="org-right">0</td>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+<td class="org-right">0</td>
+<td class="org-right">0</td>
+</tr>
+
+<tr>
+<td class="org-right">0</td>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+<td class="org-right">0</td>
+<td class="org-right">1</td>
+<td class="org-right">0</td>
+<td class="org-right">1</td>
+</tr>
+
+<tr>
+<td class="org-right">0</td>
+<td class="org-right">0</td>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+<td class="org-right">0</td>
+<td class="org-right">0</td>
+<td class="org-right">1</td>
+</tr>
+</tbody>
+</table>
+
+<p>
+<b>If you look clearly, there is only one case where an implication is false. therefor you just need to find it, and blindly say that the others are correct. A rule of thumb is that: &ldquo;A correct never implies a false&rdquo;, or  &ldquo;If a 1 tries to imply a 0, the implication is a 0&rdquo;</b>
+</p>
+
+<p>
+Aight, a last one and we are done!!! Equivalence, which is fairly easy, symbolized by a <b>⇔</b> symbol.
+</p>
+
+<p>
+A proposition is equivalent to another only when both of them have <b>the same value of truth</b> AKA: both true or both false. a little table will help demonstrate what i mean.
+</p>
+
+<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
+
+
+<colgroup>
+<col  class="org-right" />
+
+<col  class="org-right" />
+
+<col  class="org-right" />
+
+<col  class="org-right" />
+
+<col  class="org-right" />
+
+<col  class="org-right" />
+
+<col  class="org-right" />
+
+<col  class="org-right" />
+</colgroup>
+<thead>
+<tr>
+<th scope="col" class="org-right">P</th>
+<th scope="col" class="org-right">Q</th>
+<th scope="col" class="org-right">P̅</th>
+<th scope="col" class="org-right">Q̅</th>
+<th scope="col" class="org-right">P ∨ Q</th>
+<th scope="col" class="org-right">P ∧ Q</th>
+<th scope="col" class="org-right">P ⇒ Q (P̅ ∨ Q)</th>
+<th scope="col" class="org-right">P ⇔ Q</th>
+</tr>
+</thead>
+<tbody>
+<tr>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+<td class="org-right">0</td>
+<td class="org-right">0</td>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+</tr>
+
+<tr>
+<td class="org-right">1</td>
+<td class="org-right">0</td>
+<td class="org-right">0</td>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+<td class="org-right">0</td>
+<td class="org-right">0</td>
+<td class="org-right">0</td>
+</tr>
+
+<tr>
+<td class="org-right">0</td>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+<td class="org-right">0</td>
+<td class="org-right">1</td>
+<td class="org-right">0</td>
+<td class="org-right">1</td>
+<td class="org-right">0</td>
+</tr>
+
+<tr>
+<td class="org-right">0</td>
+<td class="org-right">0</td>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+<td class="org-right">0</td>
+<td class="org-right">0</td>
+<td class="org-right">1</td>
+<td class="org-right">1</td>
+</tr>
+</tbody>
+</table>
+
+<p>
+<i>Note: P implying Q is equivalent to P̅ implying Q̅, or: (P ⇒ Q) ⇔ (P̅ ⇒ Q̅)</i>
+</p>
+</div>
+<div id="outline-container-org29099d5" class="outline-3">
+<h3 id="org29099d5">Properties:</h3>
+<div class="outline-text-3" id="text-org29099d5">
+</div>
+<div id="outline-container-orgfeb62c8" class="outline-4">
+<h4 id="orgfeb62c8"><b>Absorption</b>:</h4>
+<div class="outline-text-4" id="text-orgfeb62c8">
+<p>
+(P ∨ P) ⇔ P
+</p>
+
+<p>
+(P ∧ P) ⇔ P
+</p>
+</div>
+</div>
+<div id="outline-container-org2fa2b1f" class="outline-4">
+<h4 id="org2fa2b1f"><b>Commutativity</b>:</h4>
+<div class="outline-text-4" id="text-org2fa2b1f">
+<p>
+(P ∧ Q) ⇔ (Q ∧ P)
+</p>
+
+<p>
+(P ∨ Q) ⇔ (Q ∨ P)
+</p>
+</div>
+</div>
+<div id="outline-container-orge30be26" class="outline-4">
+<h4 id="orge30be26"><b>Associativity</b>:</h4>
+<div class="outline-text-4" id="text-orge30be26">
+<p>
+P ∧ (Q ∧ R) ⇔ (P ∧ Q) ∧ R
+</p>
+
+<p>
+P ∨ (Q ∨ R) ⇔ (P ∨ Q) ∨ R
+</p>
+</div>
+</div>
+<div id="outline-container-orgd1de8d5" class="outline-4">
+<h4 id="orgd1de8d5"><b>Distributivity</b>:</h4>
+<div class="outline-text-4" id="text-orgd1de8d5">
+<p>
+P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R)
+</p>
+
+<p>
+P ∨ (Q ∧ R) ⇔ (P ∨ Q) ∧ (P ∨ R)
+</p>
+</div>
+</div>
+<div id="outline-container-org8c5c9f6" class="outline-4">
+<h4 id="org8c5c9f6"><b>Neutral element</b>:</h4>
+<div class="outline-text-4" id="text-org8c5c9f6">
+<p>
+<i>We define proposition <b>T</b> to be always <b>true</b> and <b>F</b> to be always <b>false</b></i>
+</p>
+
+<p>
+P ∧ T ⇔ P
+</p>
+
+<p>
+P ∨ F ⇔ P
+</p>
+</div>
+</div>
+<div id="outline-container-orgf102dde" class="outline-4">
+<h4 id="orgf102dde"><b>Negation of a conjunction &amp; a disjunction</b>:</h4>
+<div class="outline-text-4" id="text-orgf102dde">
+<p>
+Now we won&rsquo;t use bars here because my lazy ass doesn&rsquo;t know how, so instead I will use not()!!!
+</p>
+
+<p>
+not(<b>P ∧ Q</b>) ⇔ P̅ ∨ Q̅
+</p>
+
+<p>
+not(<b>P ∨ Q</b>) ⇔ P̅ ∧ Q̅
+</p>
+
+<p>
+<b>A rule I really like to use here is: Break and Invert. Basically you break the bar into the three characters of the propositions, so you get not(P) not(∧ or ∨) <i>NOT AN ACTUAL MATH WRITING. DONT USE IT ANYWHERE ELSE OTHER THAN YOUR BRAIN</i> and not(Q)</b>
+</p>
+</div>
+</div>
+<div id="outline-container-org9534ece" class="outline-4">
+<h4 id="org9534ece"><b>Transitivity</b>:</h4>
+<div class="outline-text-4" id="text-org9534ece">
+<p>
+[(P ⇒ Q) (Q ⇒ R)] ⇔ P ⇒ R
+</p>
+</div>
+</div>
+<div id="outline-container-org90fa987" class="outline-4">
+<h4 id="org90fa987"><b>Contraposition</b>:</h4>
+<div class="outline-text-4" id="text-org90fa987">
+<p>
+(P ⇒ Q) ⇔ (Q̅ ⇒ P̅)
+</p>
+</div>
+</div>
+<div id="outline-container-orga2d0ece" class="outline-4">
+<h4 id="orga2d0ece">God only knows what this property is called:</h4>
+<div class="outline-text-4" id="text-orga2d0ece">
+<p>
+<i>If</i>
+</p>
+
+<p>
+(P ⇒ Q) is true
+</p>
+
+<p>
+and
+</p>
+
+<p>
+(Q̅ ⇒ Q) is true
+</p>
+
+<p>
+then
+</p>
+
+<p>
+Q is always true
+</p>
+</div>
+</div>
+</div>
+<div id="outline-container-org35a43b7" class="outline-3">
+<h3 id="org35a43b7">Some exercices I found online :</h3>
+<div class="outline-text-3" id="text-org35a43b7">
+</div>
+<div id="outline-container-orgf619324" class="outline-4">
+<h4 id="orgf619324">USTHB 2022/2023 Section B :</h4>
+<div class="outline-text-4" id="text-orgf619324">
+</div>
+<ul class="org-ul">
+<li><a id="org1c47389"></a>Exercice 1: Démontrer les équivalences suivantes:<br />
+<div class="outline-text-5" id="text-org1c47389">
+<ol class="org-ol">
+<li><p>
+(P ⇒ Q) ⇔ (Q̅ ⇒ P̅)
+</p>
+
+<p>
+Basically we are asked to prove contraposition, so here we have ( P ⇒ Q ) which is equivalent to P̅ ∨ Q <b>By definition : (P ⇒ Q) ⇔  (P̅ ∨ Q)</b>
+</p></li>
+</ol>
+
+
+<p>
+So we end up with : <b>(P̅ ∨ Q) ⇔ (Q̅ ⇒ P̅)</b>, now we just do the same with the second part of the contraposition. <b>(Q̅ ⇒ P̅) ⇔ (Q ∨ P̅)</b> therefor :
+</p>
+
+
+<p>
+<b>(Q ∨ P̅) ⇔ (P̅ ∨ Q)</b>, which is true because of commutativity
+</p>
+
+<ol class="org-ol">
+<li>not(P ⇒ Q) ⇔  P ∧ Q̅</li>
+</ol>
+
+
+<p>
+Okaaaay so, let&rsquo;s first get rid of the implication, because I don&rsquo;t like it : <b>not(P̅ ∨ Q)</b>
+</p>
+
+
+<p>
+Now that we got rid of it, we can negate the whole disjunction <b>not(P̅ ∨ Q) ⇔ (P ∧ Q̅)</b>. Which is the equivalence we needed to prove
+</p>
+
+<ol class="org-ol">
+<li><p>
+P ⇒ (Q ∧ R) ⇔ (P ⇒ Q) ∧ (P ⇒ R)
+</p>
+
+<p>
+One might be tempted to replace P with P̅ to get rid of the implication&#x2026;sadly this isnt it. All we have to do here is resort to <b>Distributivity</b>, because yeah, we can distribute an implication across a {con/dis}junction
+</p></li>
+
+<li><p>
+P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R)
+</p>
+
+<p>
+Literally the same as above 🩷
+</p></li>
+</ol>
+</div>
+</li>
+<li><a id="org688fdcc"></a>Exercice 2: Dire si les propositions suivantes sont vraies ou fausses, et les nier:<br />
+<div class="outline-text-5" id="text-org688fdcc">
+<ol class="org-ol">
+<li><p>
+∀x ∈ ℝ ,∃y ∈ ℝ*+, tels que e^x = y
+</p>
+
+<p>
+For each x from the set of Real numbers, there exists a number y from the set of non-zero positive Real numbers that satisfies the equation : e^x = y
+</p></li>
+</ol>
+
+
+<p>
+&ldquo;The function f(x)=e^x is always positive and non-null&rdquo;, the very definition of an exponential function !!!!
+</p>
+
+
+<p>
+<b>So the proposition is true</b>
+</p>
+
+
+<ol class="org-ol">
+<li>∃x ∈ ℝ, tels que x^2 &lt; x &lt; x^3</li>
+</ol>
+
+
+<p>
+We just need to find a value that satisifies this condition&#x2026;thankfully its easy&#x2026;.
+</p>
+
+<p>
+x² &lt; x &lt; x³ , we divide the three terms by x so we get :
+</p>
+
+
+<p>
+x &lt; 1 &lt; x² , or :
+</p>
+
+
+<p>
+<b>x &lt; 1</b> ; <b>1 &lt; x²</b> ⇔  <b>x &lt; 1</b> ; <b>1 &lt; x</b> <i>We square root both sides</i>
+</p>
+
+
+<p>
+We end up with a contradiction, therefor its wrong
+</p>
+
+
+<ol class="org-ol">
+<li>∀x ∈ ℝ, ∃y ∈ ℝ tels que y = 3x - 8</li>
+</ol>
+
+
+<p>
+I dont really understand this one, so let me translate it &ldquo;For any value of x from the set of Real numbers, 3x - 8 is a Real number&rdquo;&#x2026;. i mean&#x2026;.yeah, we are substracting a Real number from an other real number&#x2026;
+</p>
+
+<p>
+<b>Since substraction is an  Internal composition law in ℝ, therefor all results of a substraction between two Real numbers is&#x2026;Real</b>
+</p>
+
+<ol class="org-ol">
+<li><p>
+∃x ∈ ℕ, ∀y ∈ ℕ, x &gt; y ⇒ x + y &lt; 8
+</p>
+
+<p>
+&ldquo;There exists a number x from the set of Natural numbers such as for all values of y from the set of Natural numbers, x &gt; y implies x + y &lt; 8&rdquo;
+</p></li>
+</ol>
+
+
+<p>
+Let&rsquo;s get rid of the implication :
+</p>
+
+<p>
+∃x ∈ ℕ, ∀y ∈ ℕ, (y &gt; x) ∨ (x + y &lt; 8) <i>There exists a number x from the set of Natural numbers such as for all values of y from the set of Natural numbers y &gt; x OR x + y &lt; 8</i>
+</p>
+
+<p>
+This proposition is true, because there exists a value of x that satisfies this condition, it&rsquo;s <b>all numbers under 8</b> let&rsquo;s take 3 as an example:
+</p>
+
+
+<p>
+<b>x = 3 , if y &gt; 3 then the first condition is true ; if y &lt; 3 then the second one is true</b>
+</p>
+
+
+<p>
+Meaning that the two propositions CAN NOT BE WRONG TOGETHER, either one is wrong, or the other
+</p>
+
+
+<p>
+y &gt; x
+</p>
+
+
+<p>
+<b>y - x &gt; 0</b>
+</p>
+
+
+<p>
+y + x &lt; 8
+</p>
+
+
+<p>
+<b>y &lt; 8 - x</b> <i>This one is always true for all values of x below 8, since we are working in the set ℕ</i>
+</p>
+
+
+<ol class="org-ol">
+<li><p>
+∀x ∈ ℝ, x² ≥ 1 ⇔  x ≥ 1
+</p>
+
+<p>
+&#x2026;.This is getting stupid. of course it&rsquo;s true it&rsquo;s part of the definition of the power of 2
+</p></li>
+</ol>
+</div>
+</li>
+</ul>
+</div>
+</div>
+</div>
+<div id="outline-container-orgac834f2" class="outline-2">
+<h2 id="orgac834f2">2éme cours <i>Oct 2</i></h2>
+<div class="outline-text-2" id="text-orgac834f2">
+</div>
+<div id="outline-container-org42a8fad" class="outline-3">
+<h3 id="org42a8fad">Quantifiers</h3>
+<div class="outline-text-3" id="text-org42a8fad">
+<p>
+A propriety P can depend on a parameter x
+</p>
+
+
+<p>
+∀ is the universal quantifier which stands for &ldquo;For any value of&#x2026;&rdquo;
+</p>
+
+
+<p>
+∃ is the existential quantifier which stands for &ldquo;There exists at least one&#x2026;&rdquo;
+</p>
+</div>
+<ul class="org-ul">
+<li><a id="org48c4773"></a>Example<br />
+<div class="outline-text-6" id="text-org48c4773">
+<p>
+P(x) : x+1≥0
+</p>
+
+<p>
+P(X) is True or False depending on the values of x
+</p>
+</div>
+</li>
+</ul>
+<div id="outline-container-org923b5fe" class="outline-4">
+<h4 id="org923b5fe">Proprieties</h4>
+<div class="outline-text-4" id="text-org923b5fe">
+</div>
+<ul class="org-ul">
+<li><a id="orgaf93dd2"></a>Propriety Number 1:<br />
+<div class="outline-text-5" id="text-orgaf93dd2">
+<p>
+The negation of the universal quantifier is the existential quantifier, and vice-versa :
+</p>
+
+<ul class="org-ul">
+<li>not(∀x ∈ E , P(x)) ⇔ ∃ x ∈ E, not(P(x))</li>
+<li>not(∃x ∈ E , P(x)) ⇔ ∀ x ∈ E, not(P(x))</li>
+</ul>
+</div>
+<ul class="org-ul">
+<li><a id="orgf4f038f"></a>Example:<br />
+<div class="outline-text-6" id="text-orgf4f038f">
+<p>
+∀ x ≥ 1  x² &gt; 5 ⇔ ∃ x ≥ 1 x² &lt; 5
+</p>
+</div>
+</li>
+</ul>
+</li>
+<li><a id="org2c00dae"></a>Propriety Number 2:<br />
+<div class="outline-text-5" id="text-org2c00dae">
+<p>
+<b>∀x ∈ E, [P(x) ∧ Q(x)] ⇔ [∀ x ∈ E, P(x)] ∧ [∀ x ∈ E, Q(x)]</b>
+</p>
+
+
+<p>
+The propriety &ldquo;For any value of x from a set E , P(x) and Q(x)&rdquo; is equivalent to &ldquo;For any value of x from a set E, P(x) AND for any value of x from a set E, Q(x)&rdquo;
+</p>
+</div>
+<ul class="org-ul">
+<li><a id="orga95ad05"></a>Example :<br />
+<div class="outline-text-6" id="text-orga95ad05">
+<p>
+P(x) : sqrt(x) &gt; 0 ;  Q(x) : x ≥ 1
+</p>
+
+
+<p>
+∀x ∈ ℝ*+, [sqrt(x) &gt; 0 , x ≥ 1] ⇔ [∀x ∈ R*+, sqrt(x) &gt; 0] ∧ [∀x ∈ R*+, x ≥ 1]
+</p>
+
+
+<p>
+<b>Which is true</b>
+</p>
+</div>
+</li>
+</ul>
+</li>
+<li><a id="orgfe5ddf2"></a>Propriety Number 3:<br />
+<div class="outline-text-5" id="text-orgfe5ddf2">
+<p>
+<b>∃ x ∈ E, [P(x) ∧ Q(x)] <i>⇒</i> [∃ x ∈ E, P(x)] ∧ [∃ x ∈ E, Q(x)]</b>
+</p>
+
+
+<p>
+<i>Here its an implication and not an equivalence</i>
+</p>
+</div>
+<ul class="org-ul">
+<li><a id="orgca7bea7"></a>Example of why it&rsquo;s NOT an equivalence :<br />
+<div class="outline-text-6" id="text-orgca7bea7">
+<p>
+P(x) : x &gt; 5  ;  Q(x) : x &lt; 5
+</p>
+
+
+<p>
+Of course there is no value of x such as its inferior and superior to 5 at the same time, so obviously the proposition is false. However, the two propositions separated are correct on their own, because there is a value of x such as its superior to 5, and there is also a value of x such as its inferior to 5. This is why it&rsquo;s an implication and NOT AN EQUIVALENCE!!!
+</p>
+</div>
+</li>
+</ul>
+</li>
+<li><a id="orgf4ecdc0"></a>Propriety Number 4:<br />
+<div class="outline-text-5" id="text-orgf4ecdc0">
+<p>
+<b>[∀ x ∈ E, P(x)] ∨ [∀ x ∈ E, Q(x)] <i>⇒</i> ∀x ∈ E, [P(x) ∨ Q(x)]</b>
+</p>
+
+
+<p>
+<i>Same here, implication and NOT en equivalence</i>
+</p>
+</div>
+</li>
+</ul>
+</div>
+</div>
+<div id="outline-container-org6421557" class="outline-3">
+<h3 id="org6421557">Multi-parameter proprieties :</h3>
+<div class="outline-text-3" id="text-org6421557">
+<p>
+A propriety P can depend on two or more parameters, for convenience we call them x,y,z&#x2026;etc
+</p>
+</div>
+<ul class="org-ul">
+<li><a id="org314cff3"></a>Example :<br />
+<div class="outline-text-6" id="text-org314cff3">
+<p>
+P(x,y): x+y &gt; 0
+</p>
+
+
+<p>
+P(0,1) is a True proposition
+</p>
+
+
+<p>
+P(-2,-1) is a False one
+</p>
+</div>
+</li>
+<li><a id="orga9b6089"></a>WARNING :<br />
+<div class="outline-text-6" id="text-orga9b6089">
+<p>
+∀x ∈ E, ∃y ∈ F , P(x,y)
+</p>
+
+
+<p>
+∃y ∈ F, ∀x ∈ E , P(x,y)
+</p>
+
+
+<p>
+Are different because in the first one y depends on x, while in the second one, it doesn&rsquo;t
+</p>
+</div>
+<ul class="org-ul">
+<li><a id="org3c5e5a8"></a>Example :<br />
+<div class="outline-text-7" id="text-org3c5e5a8">
+<p>
+∀ x ∈ ℕ , ∃ y ∈ ℕ y &gt; x -&#x2013;&#x2014; True
+</p>
+
+
+<p>
+∃ y ∈ ℕ , ∀ x ∈ ℕ y &gt; x -&#x2013;&#x2014; False
+</p>
+</div>
+</li>
+</ul>
+</li>
+</ul>
+<li><a id="org2f3208e"></a>Proprieties :<br />
+<div class="outline-text-5" id="text-org2f3208e">
+<ol class="org-ol">
+<li>not(∀x ∈ E ,∃y ∈ F P(x,y)) ⇔ ∃x ∈ E, ∀y ∈ F not(P(x,y))</li>
+<li>not(∃x ∈ E ,∀y ∈ F P(x,y)) ⇔ ∀x ∈ E, ∃y ∈ F not(P(x,y))</li>
+</ol>
+</div>
+</li>
+</ul>
+</div>
+<div id="outline-container-orgc25dd7a" class="outline-3">
+<h3 id="orgc25dd7a">Methods of mathematical reasoning :</h3>
+<div class="outline-text-3" id="text-orgc25dd7a">
+</div>
+<div id="outline-container-orgf843851" class="outline-4">
+<h4 id="orgf843851">Direct reasoning :</h4>
+<div class="outline-text-4" id="text-orgf843851">
+<p>
+To show that an implication P ⇒ Q is true, we suppose that P is true and we show that Q is true
+</p>
+</div>
+<ul class="org-ul">
+<li><a id="org6dd2136"></a>Example:<br />
+<div class="outline-text-5" id="text-org6dd2136">
+<p>
+Let a,b be two Real numbers, we have to prove that <b>a² + b² = 1 ⇒ |a + b| ≤ 2</b>
+</p>
+
+
+<p>
+We suppose that a²+b² = 1 and we prove that |a + b| ≤ 2
+</p>
+
+
+<p>
+a²+b²=1 ⇒  b² = 1 - a² ; a² = 1 - b²
+</p>
+
+
+<p>
+a²+b²=1 ⇒  1 - a² ≥ 0 ; 1 - b² ≥ 0
+</p>
+
+
+<p>
+a²+b²=1 ⇒  a² ≤ 1 ; b² ≤ 1
+</p>
+
+
+<p>
+a²+b²=1 ⇒ -1 ≤ a ≤ 1 ; -1 ≤ b ≤ 1
+</p>
+
+
+<p>
+a²+b²=1 ⇒ -2 ≤ a + b ≤ 2
+</p>
+
+
+<p>
+a²+b²=1 ⇒ |a + b| ≤ 2 <b>Which is what we wanted to prove, therefor the implication is correct</b>
+</p>
+</div>
+</li>
+</ul>
+</div>
+<div id="outline-container-orga59c0ad" class="outline-4">
+<h4 id="orga59c0ad">Reasoning by the Absurd:</h4>
+<div class="outline-text-4" id="text-orga59c0ad">
+<p>
+To prove that a proposition is True, we suppose that it&rsquo;s False and we must come to a contradiction
+</p>
+
+
+<p>
+And to prove that an implication P ⇒ Q is true using the reasoning by the absurd, we suppose that  P ∧ not(Q) is true, and then we come to a contradiction as well
+</p>
+</div>
+<ul class="org-ul">
+<li><a id="orgf8b9f83"></a>Example:<br />
+<div class="outline-text-5" id="text-orgf8b9f83">
+<p>
+Prove that this proposition is correct using the reasoning by the absurd : ∀x ∈ ℝ* , sqrt(1+x²) ≠ 1 + x²/2
+</p>
+
+
+<p>
+We assume that ∃ x ℝ* , sqrt(1+x²) = 1 + x²/2
+</p>
+
+
+<p>
+sqrt(1+x²) = 1 + x²/2 ; 1 + x² = (1+x²/2)² ; 1 + x² = 1 + x^4/4 + x²  ;  x^(4)/4 = 0 &#x2026; Which contradicts with our proposition, since x = 4 and we are working on the ℝ* set
+</p>
+</div>
+</li>
+</ul>
+</div>
+<div id="outline-container-orgcc285c2" class="outline-4">
+<h4 id="orgcc285c2">Reasoning by contraposition:</h4>
+<div class="outline-text-4" id="text-orgcc285c2">
+<p>
+If an implication P ⇒ Q is too hard to prove, we just have to prove not(Q) ⇒ not(P) is true !!! or in other words that both not(P) and not(Q) are true
+</p>
+</div>
+</div>
+<div id="outline-container-org2e67808" class="outline-4">
+<h4 id="org2e67808">Reasoning by counter example:</h4>
+<div class="outline-text-4" id="text-org2e67808">
+<p>
+To prove that a proposition ∀x ∈ E, P(x) is false, all we have to do is find a single value of x from E such as not(P(x)) is true
+</p>
+</div>
+</div>
+</div>
+</div>
+<div id="outline-container-org7440601" class="outline-2">
+<h2 id="org7440601">3eme Cours : <i>Oct 9</i></h2>
+<div class="outline-text-2" id="text-org7440601">
+</div>
+<div id="outline-container-org70aa2db" class="outline-4">
+<h4 id="org70aa2db">Reasoning by recurrence :</h4>
+<div class="outline-text-4" id="text-org70aa2db">
+<p>
+P is a propriety dependent of <b>n ∈ ℕ</b>. If for n0 ∈ ℕ P(n0) is true, and if for n ≥ n0 (P(n) ⇒ P(n+1)) is true. Then P(n) is true for n ≥ n0
+</p>
+</div>
+<ul class="org-ul">
+<li><a id="org52e5298"></a>Example:<br />
+<div class="outline-text-5" id="text-org52e5298">
+<p>
+Let&rsquo;s prove that ∀ n ≥ 1 , (n,k=1)Σk = [n(n+1)]/2
+</p>
+
+
+<p>
+P(n) : (n,k=1)Σk = [n(n+1)]/2
+</p>
+
+
+
+<p>
+<b>Pour n = 1:</b> (1,k=1)Σk = 1 ; [n(n+1)]/2 = 1 . <b>So P(1) is true</b>
+</p>
+
+
+
+<p>
+For n ≥ 1. We assume that P(n) is true, OR : <b>(n, k=1)Σk = n(n+1)/2</b>. We now have to prove that P(n+1) is true, Or : <b>(n+1, k=1)Σk = (n+1)(n+2)/2</b>
+</p>
+
+
+<p>
+(n+1, k=1)Σk = 1 + 2 + &#x2026;. + n + (n+1) ; (n+1, k=1)Σk = (n, k=1)Σk + (n+1) ; = n(n+1)/2 + (n+1) ; = [n(n+1) + 2(n+1)]/2 ; = <b>[(n+2)(n+1)]/2</b> <i>WHICH IS WHAT WE NEEDED TO FIND</i>
+</p>
+
+
+<p>
+<b>Conclusion: ∀n ≥ 1 , (n,k=1)Σk = n(n+1)/2</b>
+</p>
+</div>
+</li>
+</ul>
+</div>
+</div>
+<div id="outline-container-orga6a518d" class="outline-2">
+<h2 id="orga6a518d">4eme Cours : Chapitre 2 : Sets and Operations</h2>
+<div class="outline-text-2" id="text-orga6a518d">
+</div>
+<div id="outline-container-org31e3615" class="outline-3">
+<h3 id="org31e3615">Definition of a set :</h3>
+<div class="outline-text-3" id="text-org31e3615">
+<p>
+A set is a collection of objects that share the sane propriety
+</p>
+</div>
+</div>
+<div id="outline-container-orgfa9bfd1" class="outline-3">
+<h3 id="orgfa9bfd1">Belonging, inclusion, and equality :</h3>
+<div class="outline-text-3" id="text-orgfa9bfd1">
+<ol class="org-ol">
+<li>Let E be a set. If x is an element of E, we say that x belongs to E we write <b>x ∈ E</b>, and if it doesn&rsquo;t, we write <b>x ∉ E</b></li>
+<li>A set E is included in a set F if all elements of E are elements of F and we write <b>E ⊂ F ⇔ (∀x , x ∈ E ⇒ x ∈ F)</b>. We say that E is a subset of F, or a part of F. The negation of this propriety is : <b>E ⊄ F ⇔ ∃x , x ∈ E and x ⊄ F</b></li>
+<li>E and F are equal if E is included in F and F is included in E, and we write <b>E = F ⇔ (E ⊂ F) et (F ⊂ E)</b></li>
+<li>The empty set (symbolized by ∅) is a set without elements, and is included in all sets (by convention) : <b>∅ ⊂ E</b></li>
+</ol>
+</div>
+</div>
+<div id="outline-container-org2a19707" class="outline-3">
+<h3 id="org2a19707">Intersections and reunions :</h3>
+<div class="outline-text-3" id="text-org2a19707">
+</div>
+<div id="outline-container-org6a5f566" class="outline-4">
+<h4 id="org6a5f566">Intersection:</h4>
+<div class="outline-text-4" id="text-org6a5f566">
+<p>
+E ∩ F = {x / x ∈ E AND x ∈ F} ; x ∈ E ∩ F ⇔ x ∈ F AND x ∈ F
+</p>
+
+
+<p>
+x ∉ E ∩ F ⇔ x ∉ E OR x ∉ F
+</p>
+</div>
+</div>
+<div id="outline-container-org9bc9aeb" class="outline-4">
+<h4 id="org9bc9aeb">Union:</h4>
+<div class="outline-text-4" id="text-org9bc9aeb">
+<p>
+E ∪ F = {x / x ∈ E OR x ∈ F} ;  x ∈ E ∪ F ⇔ x ∈ F OR x ∈ F
+</p>
+
+
+<p>
+x ∉ E ∪ F ⇔ x ∉ E AND x ∉ F
+</p>
+</div>
+</div>
+<div id="outline-container-org9a7f719" class="outline-4">
+<h4 id="org9a7f719">Difference between two sets:</h4>
+<div class="outline-text-4" id="text-org9a7f719">
+<p>
+E\F(Which is also written as : E - F) = {x / x ∈ E and x ∉ F}
+</p>
+</div>
+</div>
+<div id="outline-container-org5f5c721" class="outline-4">
+<h4 id="org5f5c721">Complimentary set:</h4>
+<div class="outline-text-4" id="text-org5f5c721">
+<p>
+If F ⊂ E. E - F is the complimentary of F in E.
+</p>
+
+
+<p>
+FCE = {x /x ∈ E AND x ∉ F} <b>ONLY WHEN F IS A SUBSET OF E</b>
+</p>
+</div>
+</div>
+<div id="outline-container-orga285d1d" class="outline-4">
+<h4 id="orga285d1d">Symentrical difference</h4>
+<div class="outline-text-4" id="text-orga285d1d">
+<p>
+E Δ F = (E - F) ∪ (F - E) ; = (E ∪ F) - (E ∩ F)
+</p>
+</div>
+</div>
+</div>
+<div id="outline-container-orgc12e73b" class="outline-3">
+<h3 id="orgc12e73b">Proprieties :</h3>
+<div class="outline-text-3" id="text-orgc12e73b">
+<p>
+Let E,F and G be 3 sets. We have :
+</p>
+</div>
+<div id="outline-container-org31d8697" class="outline-4">
+<h4 id="org31d8697">Commutativity:</h4>
+<div class="outline-text-4" id="text-org31d8697">
+<p>
+E ∩ F = F ∩ E
+E ∪ F = F ∪ E
+</p>
+</div>
+</div>
+<div id="outline-container-org7080d99" class="outline-4">
+<h4 id="org7080d99">Associativity:</h4>
+<div class="outline-text-4" id="text-org7080d99">
+<p>
+E ∩ (F ∩ G) = (E ∩ F) ∩ G
+E ∪ (F ∪ G) = (E ∪ F) ∪ G
+</p>
+</div>
+</div>
+<div id="outline-container-org13da04d" class="outline-4">
+<h4 id="org13da04d">Distributivity:</h4>
+<div class="outline-text-4" id="text-org13da04d">
+<p>
+E ∩ (F ∪ G) = (E ∩ F) ∪ (E ∩ G)
+E ∪ (F ∩ G) = (E ∪ F) ∩ (E ∪ G)
+</p>
+</div>
+</div>
+<div id="outline-container-orgaa33b71" class="outline-4">
+<h4 id="orgaa33b71">Lois de Morgan:</h4>
+<div class="outline-text-4" id="text-orgaa33b71">
+<p>
+If E ⊂ G and F ⊂ G ;
+</p>
+
+<p>
+(E ∩ F)CG = ECG ∪ FCG ; (E ∪ F)CG = ECG ∩ FCG
+</p>
+</div>
+</div>
+<div id="outline-container-org7e7db42" class="outline-4">
+<h4 id="org7e7db42">An other one:</h4>
+<div class="outline-text-4" id="text-org7e7db42">
+<p>
+E - (F ∩ G) = (E-F) ∪ (E-G) ;  E - (F ∪ G) = (E-F) ∩ (E-G)
+</p>
+</div>
+</div>
+<div id="outline-container-orgd02bd7f" class="outline-4">
+<h4 id="orgd02bd7f">An other one:</h4>
+<div class="outline-text-4" id="text-orgd02bd7f">
+<p>
+E ∩ ∅ = ∅ ; E ∪ ∅ = E
+</p>
+</div>
+</div>
+<div id="outline-container-org99eb39a" class="outline-4">
+<h4 id="org99eb39a">And an other one:</h4>
+<div class="outline-text-4" id="text-org99eb39a">
+<p>
+E ∩ (F Δ G) = (E ∩ F) Δ (E ∩ G)
+</p>
+</div>
+</div>
+<div id="outline-container-org3e9b2ef" class="outline-4">
+<h4 id="org3e9b2ef">And the last one:</h4>
+<div class="outline-text-4" id="text-org3e9b2ef">
+<p>
+E Δ ∅ = E ; E Δ E = ∅
+</p>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div id="postamble" class="status">
+<p class="author">Author: Crystal</p>
+<p class="date">Created: 2023-10-11 Wed 19:04</p>
+</div>
+</body>
+</html>
\ No newline at end of file