about summary refs log blame commit diff stats
path: root/js/games/nluqo.github.io/~bh/61a-pages/Lib/chapter3.code
blob: 656fff48ee1a3aaf0e4e2dea72508941e51fd679 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707










































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                            
;;;;CODE FROM CHAPTER 3 OF STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAMS

;;; Examples from the book are commented out with ;: so that they
;;;  are easy to find and so that they will be omitted if you evaluate a
;;;  chunk of the file (programs with intervening examples) in Scheme.

;;; BEWARE: Although the whole file can be loaded into Scheme,
;;;  you won't want to do so.  For example, you generally do
;;;  not want to use the procedural representation of pairs
;;;  (cons, car, cdr as defined in section 3.3.1) instead of
;;;  Scheme's primitive pairs.

;;; Some things require code that is not in the book -- see ch3support.scm


;;;;SECTION 3.1

;;;SECTION 3.1.1

;: (withdraw 25)
;: (withdraw 25)
;: (withdraw 60)
;: (withdraw 15)

(define balance 100)

(define (withdraw amount)
  (if (>= balance amount)
      (begin (set! balance (- balance amount))
             balance)
      "Insufficient funds"))


(define new-withdraw
  (let ((balance 100))
    (lambda (amount)
      (if (>= balance amount)
          (begin (set! balance (- balance amount))
                 balance)
          "Insufficient funds"))))


(define (make-withdraw balance)
  (lambda (amount)
    (if (>= balance amount)
        (begin (set! balance (- balance amount))
               balance)
        "Insufficient funds")))


;: (define W1 (make-withdraw 100))
;: (define W2 (make-withdraw 100))
;: (W1 50)
;: (W2 70)
;: (W2 40)
;: (W1 40)


(define (make-account balance)
  (define (withdraw amount)
    (if (>= balance amount)
        (begin (set! balance (- balance amount))
               balance)
        "Insufficient funds"))
  (define (deposit amount)
    (set! balance (+ balance amount))
    balance)
  (define (dispatch m)
    (cond ((eq? m 'withdraw) withdraw)
          ((eq? m 'deposit) deposit)
          (else (error "Unknown request -- MAKE-ACCOUNT"
                       m))))
  dispatch)

;: (define acc (make-account 100))

;: ((acc 'withdraw) 50)
;: ((acc 'withdraw) 60)
;: ((acc 'deposit) 40)
;: ((acc 'withdraw) 60)

;: (define acc2 (make-account 100))


;; EXERCISE 3.1
;: (define A (make-accumulator 5))
;: (A 10)
;: (A 10)


;; EXERCISE 3.2
;: (define s (make-monitored sqrt))
;: (s 100)
;: (s 'how-many-calls?)


;; EXERCISE 3.3
;: (define acc (make-account 100 'secret-password))
;: ((acc 'secret-password 'withdraw) 40)
;: ((acc 'some-other-password 'deposit) 50)


;;;SECTION 3.1.2

;; *following uses rand-update -- see ch3support.scm
;; *also must set random-init to some value
(define random-init 7)			;**not in book**
(define rand
  (let ((x random-init))
    (lambda ()
      (set! x (rand-update x))
      x)))


(define (estimate-pi trials)
  (sqrt (/ 6 (monte-carlo trials cesaro-test))))

(define (cesaro-test)
   (= (gcd (rand) (rand)) 1))

(define (monte-carlo trials experiment)
  (define (iter trials-remaining trials-passed)
    (cond ((= trials-remaining 0)
           (/ trials-passed trials))
          ((experiment)
           (iter (- trials-remaining 1) (+ trials-passed 1)))
          (else
           (iter (- trials-remaining 1) trials-passed))))
  (iter trials 0))

;; second version (no assignment)
(define (estimate-pi trials)
  (sqrt (/ 6 (random-gcd-test trials random-init))))

(define (random-gcd-test trials initial-x)
  (define (iter trials-remaining trials-passed x)
    (let ((x1 (rand-update x)))
      (let ((x2 (rand-update x1)))
        (cond ((= trials-remaining 0)   
               (/ trials-passed trials))
              ((= (gcd x1 x2) 1)
               (iter (- trials-remaining 1)
                     (+ trials-passed 1)
                     x2))
              (else
               (iter (- trials-remaining 1)
                     trials-passed
                     x2))))))
  (iter trials 0 initial-x))


;; EXERCISE 3.5
(define (random-in-range low high)
  (let ((range (- high low)))
    (+ low (random range))))


;;;SECTION 3.1.3

(define (make-simplified-withdraw balance)
  (lambda (amount)
    (set! balance (- balance amount))
    balance))


;: (define W (make-simplified-withdraw 25))
;: (W 20)
;: (W 10)


(define (make-decrementer balance)
  (lambda (amount)
    (- balance amount)))

;: (define D (make-decrementer 25))
;: (D 20)
;: (D 10)

;: ((make-decrementer 25) 20)
;: ((lambda (amount) (- 25 amount)) 20)
;: (- 25 20)

;: ((make-simplified-withdraw 25) 20)

;: ((lambda (amount) (set! balance (- 25 amount)) 25) 20)
;: (set! balance (- 25 20)) 25

;;;Sameness and change

;: (define D1 (make-decrementer 25))
;: (define D2 (make-decrementer 25))
;: 
;: (define W1 (make-simplified-withdraw 25))
;: (define W2 (make-simplified-withdraw 25))
;: 
;: (W1 20)
;: (W1 20)
;: (W2 20)

;: (define peter-acc (make-account 100))
;: (define paul-acc (make-account 100))
;: 
;: (define peter-acc (make-account 100))
;: (define paul-acc peter-acc)

;;;Pitfalls of imperative programming

(define (factorial n)
  (define (iter product counter)
    (if (> counter n)
        product
        (iter (* counter product)
              (+ counter 1))))
  (iter 1 1))

(define (factorial n)
  (let ((product 1)
        (counter 1))
    (define (iter)
      (if (> counter n)
          product
          (begin (set! product (* counter product))
                 (set! counter (+ counter 1))
                 (iter))))
    (iter)))


;; EXERCISE 3.7
;: (define paul-acc
;:   (make-joint peter-acc 'open-sesame 'rosebud))


;;;;SECTION 3.2

;;;SECTION 3.2.1

(define (square x)
  (* x x))

(define square
  (lambda (x) (* x x)))


;;;SECTION 3.2.2

(define (square x)
  (* x x))

(define (sum-of-squares x y)
  (+ (square x) (square y)))

(define (f a)
  (sum-of-squares (+ a 1) (* a 2)))

;: (sum-of-squares (+ a 1) (* a 2))


;; EXERCISE 3.9

(define (factorial n)
  (if (= n 1)
      1
      (* n (factorial (- n 1)))))

(define (factorial n)
  (fact-iter 1 1 n))

(define (fact-iter product counter max-count)
  (if (> counter max-count)
      product
      (fact-iter (* counter product)
                 (+ counter 1)
                 max-count)))


;;;SECTION 3.2.3

(define (make-withdraw balance)
  (lambda (amount)
    (if (>= balance amount)
        (begin (set! balance (- balance amount))
               balance)
        "Insufficient funds")))

;: (define W1 (make-withdraw 100))
;: (W1 50)

;: (define W2 (make-withdraw 100))


;; EXERCISE 3.10

(define (make-withdraw initial-amount)
  (let ((balance initial-amount))
    (lambda (amount)
      (if (>= balance amount)
          (begin (set! balance (- balance amount))
                 balance)
          "Insufficient funds"))))


;: (define W1 (make-withdraw 100))
;: (W1 50)
;: (define W2 (make-withdraw 100))


;;;SECTION 3.2.4

;; same as in section 1.1.8
(define (sqrt x)
  (define (good-enough? guess)
    (< (abs (- (square guess) x)) 0.001))
  (define (improve guess)
    (average guess (/ x guess)))
  (define (sqrt-iter guess)
    (if (good-enough? guess)
        guess
        (sqrt-iter (improve guess))))
  (sqrt-iter 1.0))


;; EXERCISE 3.11

(define (make-account balance)
  (define (withdraw amount)
    (if (>= balance amount)
        (begin (set! balance (- balance amount))
               balance)
        "Insufficient funds"))
  (define (deposit amount)
    (set! balance (+ balance amount))
    balance)
  (define (dispatch m)
    (cond ((eq? m 'withdraw) withdraw)
          ((eq? m 'deposit) deposit)
          (else (error "Unknown request -- MAKE-ACCOUNT"
                       m))))
  dispatch)

;: (define acc (make-account 50))
;: 
;: ((acc 'deposit) 40)
;: ((acc 'withdraw) 60)
;: 
;: (define acc2 (make-account 100))


;;;;SECTION 3.3

;;;SECTION 3.3.1

(define (cons x y)
  (let ((new (get-new-pair)))
    (set-car! new x)
    (set-cdr! new y)
    new))


;; EXERCISE 3.12
(define (append x y)
  (if (null? x)
      y
      (cons (car x) (append (cdr x) y))))

(define (append! x y)
  (set-cdr! (last-pair x) y)
  x)

(define (last-pair x)
  (if (null? (cdr x))
      x
      (last-pair (cdr x))))

;: (define x (list 'a 'b))
;: (define y (list 'c 'd))
;: (define z (append  x y))
;: z
;: (cdr x)
;: 
;: (define w (append! x y))
;: w
;: (cdr x)


;; EXERCISE 3.13
(define (make-cycle x)
  (set-cdr! (last-pair x) x)
  x)

;: (define z (make-cycle (list 'a 'b 'c)))


;; EXERCISE 3.14
(define (mystery x)
  (define (loop x y)
    (if (null? x)
        y
        (let ((temp (cdr x)))
          (set-cdr! x y)
          (loop temp x))))
  (loop x '()))


;;; Sharing and identity

;: (define x (list 'a 'b))
;: (define z1 (cons x x))
;: (define z2 (cons (list 'a 'b) (list 'a 'b)))

(define (set-to-wow! x)
  (set-car! (car x) 'wow)
  x)

;: z1
;: (set-to-wow! z1)
;: z2
;: (set-to-wow! z2)


;; EXERCISE 3.16
(define (count-pairs x)
  (if (not (pair? x))
      0
      (+ (count-pairs (car x))
         (count-pairs (cdr x))
         1)))


;;;Mutation as assignment

(define (cons x y)
  (define (dispatch m)
    (cond ((eq? m 'car) x)
          ((eq? m 'cdr) y)
          (else (error "Undefined operation -- CONS" m))))
  dispatch)

(define (car z) (z 'car))
(define (cdr z) (z 'cdr))


(define (cons x y)
  (define (set-x! v) (set! x v))
  (define (set-y! v) (set! y v))
  (define (dispatch m)
    (cond ((eq? m 'car) x)
          ((eq? m 'cdr) y)
          ((eq? m 'set-car!) set-x!)
          ((eq? m 'set-cdr!) set-y!)
          (else (error "Undefined operation -- CONS" m))))
  dispatch)

(define (car z) (z 'car))
(define (cdr z) (z 'cdr))

(define (set-car! z new-value)
  ((z 'set-car!) new-value)
  z)

(define (set-cdr! z new-value)
  ((z 'set-cdr!) new-value)
  z)


;; EXERCISE 3.20
;: (define x (cons 1 2))
;: (define z (cons x x))
;: (set-car! (cdr z) 17)
;: (car x)


;;;SECTION 3.3.2

(define (front-ptr queue) (car queue))
(define (rear-ptr queue) (cdr queue))
(define (set-front-ptr! queue item) (set-car! queue item))
(define (set-rear-ptr! queue item) (set-cdr! queue item))

(define (empty-queue? queue) (null? (front-ptr queue)))
(define (make-queue) (cons '() '()))

(define (front-queue queue)
  (if (empty-queue? queue)
      (error "FRONT called with an empty queue" queue)
      (car (front-ptr queue))))

(define (insert-queue! queue item)
  (let ((new-pair (cons item '())))
    (cond ((empty-queue? queue)
           (set-front-ptr! queue new-pair)
           (set-rear-ptr! queue new-pair)
           queue)
          (else
           (set-cdr! (rear-ptr queue) new-pair)
           (set-rear-ptr! queue new-pair)
           queue)))) 

(define (delete-queue! queue)
  (cond ((empty-queue? queue)
         (error "DELETE! called with an empty queue" queue))
        (else
         (set-front-ptr! queue (cdr (front-ptr queue)))
         queue))) 


;; EXERCISE 3.21
;: (define q1 (make-queue))
;: (insert-queue! q1 'a)
;: (insert-queue! q1 'b)
;: (delete-queue! q1)
;: (delete-queue! q1)


;;;SECTION 3.3.3

(define (lookup key table)
  (let ((record (assoc key (cdr table))))
    (if record
        (cdr record)
        false)))

(define (assoc key records)
  (cond ((null? records) false)
        ((equal? key (caar records)) (car records))
        (else (assoc key (cdr records)))))

(define (insert! key value table)
  (let ((record (assoc key (cdr table))))
    (if record
        (set-cdr! record value)
        (set-cdr! table
                  (cons (cons key value) (cdr table)))))
  'ok)

(define (make-table)
  (list '*table*))

;; two-dimensional
(define (lookup key-1 key-2 table)
  (let ((subtable (assoc key-1 (cdr table))))
    (if subtable
        (let ((record (assoc key-2 (cdr subtable))))
          (if record
              (cdr record)
              false))
        false)))

(define (insert! key-1 key-2 value table)
  (let ((subtable (assoc key-1 (cdr table))))
    (if subtable
        (let ((record (assoc key-2 (cdr subtable))))
          (if record
              (set-cdr! record value)
              (set-cdr! subtable
                        (cons (cons key-2 value)
                              (cdr subtable)))))
        (set-cdr! table
                  (cons (list key-1
                              (cons key-2 value))
                        (cdr table)))))
  'ok)

;; local tables
(define (make-table)
  (let ((local-table (list '*table*)))
    (define (lookup key-1 key-2)
      (let ((subtable (assoc key-1 (cdr local-table))))
        (if subtable
            (let ((record (assoc key-2 (cdr subtable))))
              (if record
                  (cdr record)
                  false))
            false)))
    (define (insert! key-1 key-2 value)
      (let ((subtable (assoc key-1 (cdr local-table))))
        (if subtable
            (let ((record (assoc key-2 (cdr subtable))))
              (if record
                  (set-cdr! record value)
                  (set-cdr! subtable
                            (cons (cons key-2 value)
                                  (cdr subtable)))))
            (set-cdr! local-table
                      (cons (list key-1
                                  (cons key-2 value))
                            (cdr local-table)))))
      'ok)    
    (define (dispatch m)
      (cond ((eq? m 'lookup-proc) lookup)
            ((eq? m 'insert-proc!) insert!)
            (else (error "Unknown operation -- TABLE" m))))
    dispatch))

(define operation-table (make-table))
(define get (operation-table 'lookup-proc))
(define put (operation-table 'insert-proc!))


;; EXERCISE 3.27
(define (fib n)
  (cond ((= n 0) 0)
        ((= n 1) 1)
        (else (+ (fib (- n 1))
                 (fib (- n 2))))))

(define (memoize f)
  (let ((table (make-table)))
    (lambda (x)
      (let ((previously-computed-result (lookup x table)))
        (or previously-computed-result
            (let ((result (f x)))
              (insert! x result table)
              result))))))

(define memo-fib
  (memoize (lambda (n)
             (cond ((= n 0) 0)
                   ((= n 1) 1)
                   (else (+ (memo-fib (- n 1))
                            (memo-fib (- n 2))))))))

;;;SECTION 3.3.4

;: (define a (make-wire))
;: (define b (make-wire))
;: (define c (make-wire))
;: (define d (make-wire))
;: (define e (make-wire))
;: (define s (make-wire))
;: 
;: (or-gate a b d)
;: (and-gate a b c)
;: (inverter c e)
;: (and-gate d e s)


;;NB. To use half-adder, need or-gate from exercise 3.28
(define (half-adder a b s c)
  (let ((d (make-wire)) (e (make-wire)))
    (or-gate a b d)
    (and-gate a b c)
    (inverter c e)
    (and-gate d e s)
    'ok))

(define (full-adder a b c-in sum c-out)
  (let ((s (make-wire))
        (c1 (make-wire))
        (c2 (make-wire)))
    (half-adder b c-in s c1)
    (half-adder a s sum c2)
    (or-gate c1 c2 c-out)
    'ok))

(define (inverter input output)
  (define (invert-input)
    (let ((new-value (logical-not (get-signal input))))
      (after-delay inverter-delay
                   (lambda ()
                     (set-signal! output new-value)))))
  (add-action! input invert-input)
  'ok)

(define (logical-not s)
  (cond ((= s 0) 1)
        ((= s 1) 0)
        (else (error "Invalid signal" s))))

;; *following uses logical-and -- see ch3support.scm

(define (and-gate a1 a2 output)
  (define (and-action-procedure)
    (let ((new-value
           (logical-and (get-signal a1) (get-signal a2))))
      (after-delay and-gate-delay
                   (lambda ()
                     (set-signal! output new-value)))))
  (add-action! a1 and-action-procedure)
  (add-action! a2 and-action-procedure)
  'ok)


(define (make-wire)
  (let ((signal-value 0) (action-procedures '()))
    (define (set-my-signal! new-value)
      (if (not (= signal-value new-value))
          (begin (set! signal-value new-value)
                 (call-each action-procedures))
          'done))
    (define (accept-action-procedure! proc)
      (set! action-procedures (cons proc action-procedures))
      (proc))
    (define (dispatch m)
      (cond ((eq? m 'get-signal) signal-value)
            ((eq? m 'set-signal!) set-my-signal!)
            ((eq? m 'add-action!) accept-action-procedure!)
            (else (error "Unknown operation -- WIRE" m))))
    dispatch))

(define (call-each procedures)
  (if (null? procedures)
      'done
      (begin
        ((car procedures))
        (call-each (cdr procedures)))))

(define (get-signal wire)
  (wire 'get-signal))

(define (set-signal! wire new-value)
  ((wire 'set-signal!) new-value))

(define (add-action! wire action-procedure)
  ((wire 'add-action!) action-procedure))

(define (after-delay delay action)
  (add-to-agenda! (+ delay (current-time the-agenda))
                  action
                  the-agenda))

(define (propagate)
  (if (empty-agenda? the-agenda)
      'done
      (let ((first-item (first-agenda-item the-agenda)))
        (first-item)
        (remove-first-agenda-item! the-agenda)
        (propagate))))

(define (probe name wire)
  (add-action! wire
               (lambda ()        
                 (newline)
                 (display name)
                 (display " ")
                 (display (current-time the-agenda))
                 (display "  New-value = ")
                 (display (get-signal wire)))))

;;; Sample simulation

;: (define the-agenda (make-agenda))
;: (define inverter-delay 2)
;: (define and-gate-delay 3)
;: (define or-gate-delay 5)
;: 
;: (define input-1 (make-wire))
;: (define input-2 (make-wire))
;: (define sum (make-wire))
;: (define carry (make-wire))
;: 
;: (probe 'sum sum)
;: (probe 'carry carry)
;: 
;: (half-adder input-1 input-2 sum carry)
;: (set-signal! input-1 1)
;: (propagate)
;: 
;: (set-signal! input-2 1)
;: (propagate)


;; EXERCISE 3.31
;: (define (accept-action-procedure! proc)
;:   (set! action-procedures (cons proc action-procedures)))


;;;Implementing agenda

(define (make-time-segment time queue)
  (cons time queue))
(define (segment-time s) (car s))
(define (segment-queue s) (cdr s))

(define (make-agenda) (list 0))

(define (current-time agenda) (car agenda))
(define (set-current-time! agenda time)
  (set-car! agenda time))

(define (segments agenda) (cdr agenda))
(define (set-segments! agenda segments)
  (set-cdr! agenda segments))
(define (first-segment agenda) (car (segments agenda)))
(define (rest-segments agenda) (cdr (segments agenda)))

(define (empty-agenda? agenda)
  (null? (segments agenda)))

(define (add-to-agenda! time action agenda)
  (define (belongs-before? segments)
    (or (null? segments)
        (< time (segment-time (car segments)))))
  (define (make-new-time-segment time action)
    (let ((q (make-queue)))
      (insert-queue! q action)
      (make-time-segment time q)))
  (define (add-to-segments! segments)
    (if (= (segment-time (car segments)) time)
        (insert-queue! (segment-queue (car segments))
                       action)
        (let ((rest (cdr segments)))
          (if (belongs-before? rest)
              (set-cdr!
               segments
               (cons (make-new-time-segment time action)
                     (cdr segments)))
              (add-to-segments! rest)))))
  (let ((segments (segments agenda)))
    (if (belongs-before? segments)
        (set-segments!
         agenda
         (cons (make-new-time-segment time action)
               segments))
        (add-to-segments! segments))))

(define (remove-first-agenda-item! agenda)
  (let ((q (segment-queue (first-segment agenda))))
    (delete-queue! q)
    (if (empty-queue? q)
        (set-segments! agenda (rest-segments agenda)))))

(define (first-agenda-item agenda)
  (if (empty-agenda? agenda)
      (error "Agenda is empty -- FIRST-AGENDA-ITEM")
      (let ((first-seg (first-segment agenda)))
        (set-current-time! agenda (segment-time first-seg))
        (front-queue (segment-queue first-seg)))))


;;;SECTION 3.3.5

;: (define C (make-connector))
;: (define F (make-connector))
;: (celsius-fahrenheit-converter C F)

(define (celsius-fahrenheit-converter c f)
  (let ((u (make-connector))
        (v (make-connector))
        (w (make-connector))
        (x (make-connector))
        (y (make-connector)))
    (multiplier c w u)
    (multiplier v x u)
    (adder v y f)
    (constant 9 w)
    (constant 5 x)
    (constant 32 y)
    'ok))

;: (probe "Celsius temp" C)
;: (probe "Fahrenheit temp" F)
;: (set-value! C 25 'user)
;: (set-value! F 212 'user)
;: (forget-value! C 'user)
;: (set-value! F 212 'user)


(define (adder a1 a2 sum)
  (define (process-new-value)
    (cond ((and (has-value? a1) (has-value? a2))
           (set-value! sum
                       (+ (get-value a1) (get-value a2))
                       me))
          ((and (has-value? a1) (has-value? sum))
           (set-value! a2
                       (- (get-value sum) (get-value a1))
                       me))
          ((and (has-value? a2) (has-value? sum))
           (set-value! a1
                       (- (get-value sum) (get-value a2))
                       me))))
  (define (process-forget-value)
    (forget-value! sum me)
    (forget-value! a1 me)
    (forget-value! a2 me)
    (process-new-value))
  (define (me request)
    (cond ((eq? request 'I-have-a-value)  
           (process-new-value))
          ((eq? request 'I-lost-my-value) 
           (process-forget-value))
          (else 
           (error "Unknown request -- ADDER" request))))
  (connect a1 me)
  (connect a2 me)
  (connect sum me)
  me)

(define (inform-about-value constraint)
  (constraint 'I-have-a-value))

(define (inform-about-no-value constraint)
  (constraint 'I-lost-my-value))

(define (multiplier m1 m2 product)
  (define (process-new-value)
    (cond ((or (and (has-value? m1) (= (get-value m1) 0))
               (and (has-value? m2) (= (get-value m2) 0)))
           (set-value! product 0 me))
          ((and (has-value? m1) (has-value? m2))
           (set-value! product
                       (* (get-value m1) (get-value m2))
                       me))
          ((and (has-value? product) (has-value? m1))
           (set-value! m2
                       (/ (get-value product) (get-value m1))
                       me))
          ((and (has-value? product) (has-value? m2))
           (set-value! m1
                       (/ (get-value product) (get-value m2))
                       me))))
  (define (process-forget-value)
    (forget-value! product me)
    (forget-value! m1 me)
    (forget-value! m2 me)
    (process-new-value))
  (define (me request)
    (cond ((eq? request 'I-have-a-value)
           (process-new-value))
          ((eq? request 'I-lost-my-value)
           (process-forget-value))
          (else
           (error "Unknown request -- MULTIPLIER" request))))
  (connect m1 me)
  (connect m2 me)
  (connect product me)
  me)

(define (constant value connector)
  (define (me request)
    (error "Unknown request -- CONSTANT" request))
  (connect connector me)
  (set-value! connector value me)
  me)

(define (probe name connector)
  (define (print-probe value)
    (newline)
    (display "Probe: ")
    (display name)
    (display " = ")
    (display value))
  (define (process-new-value)
    (print-probe (get-value connector)))
  (define (process-forget-value)
    (print-probe "?"))
  (define (me request)
    (cond ((eq? request 'I-have-a-value)
           (process-new-value))
          ((eq? request 'I-lost-my-value)
           (process-forget-value))
          (else
           (error "Unknown request -- PROBE" request))))
  (connect connector me)
  me)

(define (make-connector)
  (let ((value false) (informant false) (constraints '()))
    (define (set-my-value newval setter)
      (cond ((not (has-value? me))
             (set! value newval)
             (set! informant setter)
             (for-each-except setter
                              inform-about-value
                              constraints))
            ((not (= value newval))
             (error "Contradiction" (list value newval)))
            (else 'ignored)))
    (define (forget-my-value retractor)
      (if (eq? retractor informant)
          (begin (set! informant false)
                 (for-each-except retractor
                                  inform-about-no-value
                                  constraints))
          'ignored))
    (define (connect new-constraint)
      (if (not (memq new-constraint constraints))
          (set! constraints 
                (cons new-constraint constraints)))
      (if (has-value? me)
          (inform-about-value new-constraint))
      'done)
    (define (me request)
      (cond ((eq? request 'has-value?)
             (if informant true false))
            ((eq? request 'value) value)
            ((eq? request 'set-value!) set-my-value)
            ((eq? request 'forget) forget-my-value)
            ((eq? request 'connect) connect)
            (else (error "Unknown operation -- CONNECTOR"
                         request))))
    me))

(define (for-each-except exception procedure list)
  (define (loop items)
    (cond ((null? items) 'done)
          ((eq? (car items) exception) (loop (cdr items)))
          (else (procedure (car items))
                (loop (cdr items)))))
  (loop list))

(define (has-value? connector)
  (connector 'has-value?))

(define (get-value connector)
  (connector 'value))

(define (set-value! connector new-value informant)
  ((connector 'set-value!) new-value informant))

(define (forget-value! connector retractor)
  ((connector 'forget) retractor))

(define (connect connector new-constraint)
  ((connector 'connect) new-constraint))


;; EXERCISE 3.34

(define (squarer a b)
  (multiplier a a b))



;; EXERCISE 3.36
;: (define a (make-connector))
;: (define b (make-connector))
;: (set-value! a 10 'user)


;; EXERCISE 3.37

(define (celsius-fahrenheit-converter x)
  (c+ (c* (c/ (cv 9) (cv 5))
          x)
      (cv 32)))

;: (define C (make-connector))
;: (define F (celsius-fahrenheit-converter C))

(define (c+ x y)
  (let ((z (make-connector)))
    (adder x y z)
    z))


;;;SECTION 3.4
;;;**Need parallel-execute, available for MIT Scheme

;;;SECTION 3.4.1

(define (withdraw amount)
  (if (>= balance amount)
      (begin (set! balance (- balance amount))
             balance)
      "Insufficient funds"))


;; EXERCISE 3.38
;: (set! balance (+ balance 10))
;: (set! balance (- balance 20))
;: (set! balance (- balance (/ balance 2)))


;;;SECTION 3.4.2

;: (define x 10)
;: (parallel-execute (lambda () (set! x (* x x)))
;:                   (lambda () (set! x (+ x 1))))

;: (define x 10)
;: (define s (make-serializer))
;: (parallel-execute (s (lambda () (set! x (* x x))))
;:                   (s (lambda () (set! x (+ x 1)))))


(define (make-account balance)
  (define (withdraw amount)
    (if (>= balance amount)
        (begin (set! balance (- balance amount))
               balance)
        "Insufficient funds"))
  (define (deposit amount)
    (set! balance (+ balance amount))
    balance)
  (let ((protected (make-serializer)))
    (define (dispatch m)
      (cond ((eq? m 'withdraw) (protected withdraw))
            ((eq? m 'deposit) (protected deposit))
            ((eq? m 'balance) balance)
            (else (error "Unknown request -- MAKE-ACCOUNT"
                         m))))
    dispatch))


;; EXERCISE 3.39

;: (define x 10)
;: (define s (make-serializer))
;: (parallel-execute (lambda () (set! x ((s (lambda () (* x x))))))
;:                   (s (lambda () (set! x (+ x 1)))))


;; EXERCISE 3.40

;: (define x 10)
;: (parallel-execute (lambda () (set! x (* x x)))
;:                   (lambda () (set! x (* x x x))))
;: 
;: 
;: (define x 10)
;: (define s (make-serializer))
;: (parallel-execute (s (lambda () (set! x (* x x))))
;:                   (s (lambda () (set! x (* x x x)))))


;; EXERCISE 3.41

(define (make-account balance)
  (define (withdraw amount)
    (if (>= balance amount)
        (begin (set! balance (- balance amount))
               balance)
        "Insufficient funds"))
  (define (deposit amount)
    (set! balance (+ balance amount))
    balance)
  (let ((protected (make-serializer)))
    (define (dispatch m)
      (cond ((eq? m 'withdraw) (protected withdraw))
            ((eq? m 'deposit) (protected deposit))
            ((eq? m 'balance)
             ((protected (lambda () balance))))
            (else (error "Unknown request -- MAKE-ACCOUNT"
                         m))))
    dispatch))

;; EXERCISE 3.42

(define (make-account balance)
  (define (withdraw amount)
    (if (>= balance amount)
        (begin (set! balance (- balance amount))
               balance)
        "Insufficient funds"))
  (define (deposit amount)
    (set! balance (+ balance amount))
    balance)
  (let ((protected (make-serializer)))
    (let ((protected-withdraw (protected withdraw))
	  (protected-deposit (protected deposit)))
      (define (dispatch m)
	(cond ((eq? m 'withdraw) protected-withdraw)
	      ((eq? m 'deposit) protected-deposit)
	      ((eq? m 'balance) balance)
	      (else (error "Unknown request -- MAKE-ACCOUNT"
			   m))))
      dispatch)))

;;;Multiple shared resources

(define (exchange account1 account2)
  (let ((difference (- (account1 'balance)
                       (account2 'balance))))
    ((account1 'withdraw) difference)
    ((account2 'deposit) difference)))

(define (make-account-and-serializer balance)
  (define (withdraw amount)
    (if (>= balance amount)
        (begin (set! balance (- balance amount))
               balance)
        "Insufficient funds"))
  (define (deposit amount)
    (set! balance (+ balance amount))
    balance)
  (let ((balance-serializer (make-serializer)))
    (define (dispatch m)
      (cond ((eq? m 'withdraw) withdraw)
            ((eq? m 'deposit) deposit)
            ((eq? m 'balance) balance)
            ((eq? m 'serializer) balance-serializer)
            (else (error "Unknown request -- MAKE-ACCOUNT"
                         m))))
    dispatch))


(define (deposit account amount)
  (let ((s (account 'serializer))
        (d (account 'deposit)))
    ((s d) amount)))

(define (serialized-exchange account1 account2)
  (let ((serializer1 (account1 'serializer))
        (serializer2 (account2 'serializer)))
    ((serializer1 (serializer2 exchange))
     account1
     account2)))


;; EXERCISE 3.44

(define (transfer from-account to-account amount)
  ((from-account 'withdraw) amount)
  ((to-account 'deposit) amount))


;; EXERCISE 3.45

(define (make-account-and-serializer balance)
  (define (withdraw amount)
    (if (>= balance amount)
        (begin (set! balance (- balance amount))
               balance)
        "Insufficient funds"))
  (define (deposit amount)
    (set! balance (+ balance amount))
    balance)
  (let ((balance-serializer (make-serializer)))
    (define (dispatch m)
      (cond ((eq? m 'withdraw) (balance-serializer withdraw))
            ((eq? m 'deposit) (balance-serializer deposit))
            ((eq? m 'balance) balance)
            ((eq? m 'serializer) balance-serializer)
            (else (error "Unknown request -- MAKE-ACCOUNT"
                         m))))
    dispatch))

(define (deposit account amount)
 ((account 'deposit) amount))


;;;Implementing serializers

(define (make-serializer)
  (let ((mutex (make-mutex)))
    (lambda (p)
      (define (serialized-p . args)
        (mutex 'acquire)
        (let ((val (apply p args)))
          (mutex 'release)
          val))
      serialized-p)))

(define (make-mutex)
  (let ((cell (list false)))            
    (define (the-mutex m)
      (cond ((eq? m 'acquire)
             (if (test-and-set! cell)
                 (the-mutex 'acquire)))
            ((eq? m 'release) (clear! cell))))
    the-mutex))

(define (clear! cell)
  (set-car! cell false))

(define (test-and-set! cell)
  (if (car cell)
      true
      (begin (set-car! cell true)
             false)))

;;from footnote -- MIT Scheme
(define (test-and-set! cell)
  (without-interrupts
   (lambda ()
     (if (car cell)
         true
         (begin (set-car! cell true)
                false)))))

;;;SECTION 3.5

;;;SECTION 3.5.1

(define (sum-primes a b)
  (define (iter count accum)
    (cond ((> count b) accum)
          ((prime? count) (iter (+ count 1) (+ count accum)))
          (else (iter (+ count 1) accum))))
  (iter a 0))


(define (sum-primes a b)
  (accumulate +
              0
              (filter prime? (enumerate-interval a b))))

;: (car (cdr (filter prime?
;:                   (enumerate-interval 10000 1000000))))

(define (stream-ref s n)
  (if (= n 0)
      (stream-car s)
      (stream-ref (stream-cdr s) (- n 1))))

(define (stream-map proc s)
  (if (stream-null? s)
      the-empty-stream
      (cons-stream (proc (stream-car s))
                   (stream-map proc (stream-cdr s)))))

(define (stream-for-each proc s)
  (if (stream-null? s)
      'done
      (begin (proc (stream-car s))
             (stream-for-each proc (stream-cdr s)))))

(define (display-stream s)
  (stream-for-each display-line s))

(define (display-line x)
  (newline)
  (display x))



;; stream-car and stream-cdr would normally be built into
;;  the stream implementation
;: (define (stream-car stream) (car stream))
;: (define (stream-cdr stream) (force (cdr stream)))

;: (stream-car
;:  (stream-cdr
;:   (stream-filter prime?
;:                  (stream-enumerate-interval 10000 1000000))))

(define (stream-enumerate-interval low high)
  (if (> low high)
      the-empty-stream
      (cons-stream
       low
       (stream-enumerate-interval (+ low 1) high))))

(define (stream-filter pred stream)
  (cond ((stream-null? stream) the-empty-stream)
        ((pred (stream-car stream))
         (cons-stream (stream-car stream)
                      (stream-filter pred
                                     (stream-cdr stream))))
        (else (stream-filter pred (stream-cdr stream)))))


;; force would normally be built into
;;  the stream implementation
;: (define (force delayed-object)
;:   (delayed-object))

(define (memo-proc proc)
  (let ((already-run? false) (result false))
    (lambda ()
      (if (not already-run?)
          (begin (set! result (proc))
                 (set! already-run? true)
                 result)
          result))))


;; EXERCISE 3.51

(define (show x)
  (display-line x)
  x)

;: (define x (stream-map show (stream-enumerate-interval 0 10)))
;: (stream-ref x 5)
;: (stream-ref x 7)


;; EXERCISE 3.52

(define sum 0)

(define (accum x)
  (set! sum (+ x sum))
  sum)

;: (define seq (stream-map accum (stream-enumerate-interval 1 20)))
;: (define y (stream-filter even? seq))
;: (define z (stream-filter (lambda (x) (= (remainder x 5) 0))
;:                          seq))

;: (stream-ref y 7)
;: (display-stream z)


;;;SECTION 3.5.2

(define (integers-starting-from n)
  (cons-stream n (integers-starting-from (+ n 1))))

(define integers (integers-starting-from 1))

(define (divisible? x y) (= (remainder x y) 0))

(define no-sevens
  (stream-filter (lambda (x) (not (divisible? x 7)))
                 integers))

;: (stream-ref no-sevens 100)

(define (fibgen a b)
  (cons-stream a (fibgen b (+ a b))))

(define fibs (fibgen 0 1))

(define (sieve stream)
  (cons-stream
   (stream-car stream)
   (sieve (stream-filter
           (lambda (x)
             (not (divisible? x (stream-car stream))))
           (stream-cdr stream)))))

(define primes (sieve (integers-starting-from 2)))

;: (stream-ref primes 50)


;;;Defining streams implicitly;;;Defining streams implicitly

(define ones (cons-stream 1 ones))

(define (add-streams s1 s2)
  (stream-map + s1 s2))

(define integers (cons-stream 1 (add-streams ones integers)))

(define fibs
  (cons-stream 0
               (cons-stream 1
                            (add-streams (stream-cdr fibs)
                                         fibs))))

(define (scale-stream stream factor)
  (stream-map (lambda (x) (* x factor)) stream))

(define double (cons-stream 1 (scale-stream double 2)))

(define primes
  (cons-stream
   2
   (stream-filter prime? (integers-starting-from 3))))

(define (prime? n)
  (define (iter ps)
    (cond ((> (square (stream-car ps)) n) true)
          ((divisible? n (stream-car ps)) false)
          (else (iter (stream-cdr ps)))))
  (iter primes))


;; EXERCISE 3.53
;: (define s (cons-stream 1 (add-streams s s)))


;; EXERCISE 3.56
(define (merge s1 s2)
  (cond ((stream-null? s1) s2)
        ((stream-null? s2) s1)
        (else
         (let ((s1car (stream-car s1))
               (s2car (stream-car s2)))
           (cond ((< s1car s2car)
                  (cons-stream s1car (merge (stream-cdr s1) s2)))
                 ((> s1car s2car)
                  (cons-stream s2car (merge s1 (stream-cdr s2))))
                 (else
                  (cons-stream s1car
                               (merge (stream-cdr s1)
                                      (stream-cdr s2)))))))))


;; EXERCISE 3.58
(define (expand num den radix)
  (cons-stream
   (quotient (* num radix) den)
   (expand (remainder (* num radix) den) den radix)))


;; EXERCISE 3.59
;: (define exp-series
;:   (cons-stream 1 (integrate-series exp-series)))


;;;SECTION 3.5.3

(define (sqrt-improve guess x)
  (average guess (/ x guess)))


(define (sqrt-stream x)
  (define guesses
    (cons-stream 1.0
                 (stream-map (lambda (guess)
                               (sqrt-improve guess x))
                             guesses)))
  guesses)

;: (display-stream (sqrt-stream 2))


(define (pi-summands n)
  (cons-stream (/ 1.0 n)
               (stream-map - (pi-summands (+ n 2)))))

;: (define pi-stream
;:   (scale-stream (partial-sums (pi-summands 1)) 4))

;: (display-stream pi-stream)


(define (euler-transform s)
  (let ((s0 (stream-ref s 0))
        (s1 (stream-ref s 1))    
        (s2 (stream-ref s 2)))
    (cons-stream (- s2 (/ (square (- s2 s1))
                          (+ s0 (* -2 s1) s2)))
                 (euler-transform (stream-cdr s)))))

;: (display-stream (euler-transform pi-stream))


(define (make-tableau transform s)
  (cons-stream s
               (make-tableau transform
                             (transform s))))

(define (accelerated-sequence transform s)
  (stream-map stream-car
              (make-tableau transform s)))

;: (display-stream (accelerated-sequence euler-transform
;:                                       pi-stream))


;; EXERCISE 3.63
(define (sqrt-stream x)
  (cons-stream 1.0
               (stream-map (lambda (guess)
                             (sqrt-improve guess x))
                           (sqrt-stream x))))

;; EXERCISE 3.64
(define (sqrt x tolerance)
  (stream-limit (sqrt-stream x) tolerance))


;;; Infinite streams of pairs

;: (stream-filter (lambda (pair)
;:                  (prime? (+ (car pair) (cadr pair))))
;:                int-pairs)

(define (stream-append s1 s2)
  (if (stream-null? s1)
      s2
      (cons-stream (stream-car s1)
                   (stream-append (stream-cdr s1) s2))))


;: (pairs integers integers)


(define (interleave s1 s2)
  (if (stream-null? s1)
      s2
      (cons-stream (stream-car s1)
                   (interleave s2 (stream-cdr s1)))))

(define (pairs s t)
  (cons-stream
   (list (stream-car s) (stream-car t))
   (interleave
    (stream-map (lambda (x) (list (stream-car s) x))
                (stream-cdr t))
    (pairs (stream-cdr s) (stream-cdr t)))))


;; EXERCISE 3.68

(define (pairs s t)
  (interleave
   (stream-map (lambda (x) (list (stream-car s) x))
               t)
   (pairs (stream-cdr s) (stream-cdr t))))


;;; Streams as signals

(define (integral integrand initial-value dt)
  (define int
    (cons-stream initial-value
                 (add-streams (scale-stream integrand dt)
                              int)))
  int)


;; EXERCISE 3.74

(define (make-zero-crossings input-stream last-value)
  (cons-stream
   (sign-change-detector (stream-car input-stream) last-value)
   (make-zero-crossings (stream-cdr input-stream)
                        (stream-car input-stream))))

;: (define zero-crossings (make-zero-crossings sense-data 0))



;; EXERCISE 3.75

(define (make-zero-crossings input-stream last-value)
  (let ((avpt (/ (+ (stream-car input-stream) last-value) 2)))
    (cons-stream (sign-change-detector avpt last-value)
                 (make-zero-crossings (stream-cdr input-stream)
                                      avpt))))


;;;SECTION 3.5.4

(define (solve f y0 dt)
  (define y (integral dy y0 dt))
  (define dy (stream-map f y))
  y)

(define (integral delayed-integrand initial-value dt)
  (define int
    (cons-stream initial-value
                 (let ((integrand (force delayed-integrand)))
                   (add-streams (scale-stream integrand dt)
                                int))))
  int)

(define (solve f y0 dt)
  (define y (integral (delay dy) y0 dt))
  (define dy (stream-map f y))
  y)


;: (stream-ref (solve (lambda (y) y) 1 0.001) 1000)


;; EXERCISE 3.77

(define (integral integrand initial-value dt)
  (cons-stream initial-value
               (if (stream-null? integrand)
                   the-empty-stream
                   (integral (stream-cdr integrand)
                             (+ (* dt (stream-car integrand))
                                initial-value)
                             dt))))

;;;SECTION 3.5.5

;; same as in section 3.1.2
(define rand
  (let ((x random-init))
    (lambda ()
      (set! x (rand-update x))
      x)))


(define random-numbers
  (cons-stream random-init
               (stream-map rand-update random-numbers)))


;: (define cesaro-stream
;:   (map-successive-pairs (lambda (r1 r2) (= (gcd r1 r2) 1))
;:                         random-numbers))

(define (map-successive-pairs f s)
  (cons-stream
   (f (stream-car s) (stream-car (stream-cdr s)))
   (map-successive-pairs f (stream-cdr (stream-cdr s)))))


(define (monte-carlo experiment-stream passed failed)
  (define (next passed failed)
    (cons-stream
     (/ passed (+ passed failed))
     (monte-carlo
      (stream-cdr experiment-stream) passed failed)))
  (if (stream-car experiment-stream)
      (next (+ passed 1) failed)
      (next passed (+ failed 1))))

;: (define pi
;:   (stream-map (lambda (p) (sqrt (/ 6 p)))
;:               (monte-carlo cesaro-stream 0 0)))


;; same as in section 3.1.3
(define (make-simplified-withdraw balance)
  (lambda (amount)
    (set! balance (- balance amount))
    balance))

(define (stream-withdraw balance amount-stream)
  (cons-stream
   balance
   (stream-withdraw (- balance (stream-car amount-stream))
                    (stream-cdr amount-stream))))