about summary refs log tree commit diff stats
path: root/js/scripting-lang/tutorials/Combinators_Deep_Dive.md
diff options
context:
space:
mode:
Diffstat (limited to 'js/scripting-lang/tutorials/Combinators_Deep_Dive.md')
-rw-r--r--js/scripting-lang/tutorials/Combinators_Deep_Dive.md812
1 files changed, 0 insertions, 812 deletions
diff --git a/js/scripting-lang/tutorials/Combinators_Deep_Dive.md b/js/scripting-lang/tutorials/Combinators_Deep_Dive.md
deleted file mode 100644
index e73382b..0000000
--- a/js/scripting-lang/tutorials/Combinators_Deep_Dive.md
+++ /dev/null
@@ -1,812 +0,0 @@
-# Problem Solving with Functional Programming
-
-This tutorial takes you deep into the world of combinators and functional programming patterns. We'll explore how to think about problems functionally and solve them using the language's combinator-based architecture.
-
-## Prerequisites
-
-This tutorial assumes you've completed the Introduction tutorial and are comfortable with:
-
-- Basic function definitions and application
-- Pattern matching with `when` expressions
-- Working with tables
-- Function references using `@`
-
-## The Combinator Mindset
-
-### What Are Combinators?
-
-Combinators are functions that combine other functions to create new behaviors. In our language, **everything is a function call** - even operators like `+` and `*` are translated to combinator functions like `add` and `multiply`.
-
-```plaintext
-/* Understanding the translation */
-x + y * z
-
-/* Becomes internally: */
-add(x, multiply(y, z))
-```
-
-This approach gives us:
-- **Zero ambiguity**: Every expression has exactly one interpretation
-- **Functional foundation**: Everything is a function call
-- **Composability**: Functions can be combined in powerful ways
-- **Extensibility**: New operations are just new functions
-
-## Core Combinators: Building Blocks
-
-### Map: Transform Everything
-
-`map` applies a function to every element in a collection:
-
-```plaintext
-/* Basic map usage */
-double : x -> x * 2;
-numbers : {1, 2, 3, 4, 5};
-doubled : map @double numbers;
-/* Result: {2, 4, 6, 8, 10} */
-
-/* Map with tables */
-person : {name: "Alice", age: 30, city: "NYC"};
-get_age : x -> x.age;
-ages : map @get_age person;
-/* Result: {name: 30, age: 30, city: 30} */
-
-/* Map with complex transformations */
-format_person : person -> {
-  name: person.name,
-  age: person.age + " years old",
-  city: "📍 " + person.city
-};
-formatted : map @format_person {alice: person};
-/* Result: {alice: {name: "Alice", age: "30 years old", city: "📍 NYC"}} */
-```
-
-### Filter: Select What You Want
-
-`filter` keeps only elements that satisfy a predicate:
-
-```plaintext
-/* Basic filtering */
-is_even : x -> x % 2 = 0;
-numbers : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
-evens : filter @is_even numbers;
-/* Result: {2, 4, 6, 8, 10} */
-
-/* Filter with complex predicates */
-is_adult : person -> person.age >= 18;
-people : {
-  alice: {name: "Alice", age: 25},
-  bob: {name: "Bob", age: 16},
-  charlie: {name: "Charlie", age: 30}
-};
-adults : filter @is_adult people;
-/* Result: {alice: {name: "Alice", age: 25}, charlie: {name: "Charlie", age: 30}} */
-
-/* Chaining filter conditions */
-is_high_value : x -> x > 5;
-is_low_value : x -> x < 15;
-numbers : {1, 3, 7, 12, 18, 22};
-medium : filter @is_high_value (filter @is_low_value numbers);
-/* Result: {7, 12} */
-```
-
-### Reduce: Accumulate Results
-
-`reduce` combines all elements into a single value:
-
-```plaintext
-/* Basic reduction */
-numbers : {1, 2, 3, 4, 5};
-sum : reduce @add 0 numbers;
-/* Result: 15 */
-
-/* Complex reduction */
-people : {
-  alice: {name: "Alice", salary: 50000},
-  bob: {name: "Bob", salary: 60000},
-  charlie: {name: "Charlie", salary: 45000}
-};
-get_salary : person -> person.salary;
-total_salary : reduce @add 0 (map @get_salary people);
-/* Result: 155000 */
-
-/* Building complex objects with reduce */
-entries : {name: "Alice", age: 30, city: "NYC"};
-to_list : key value -> {key: key, value: value};
-pairs : reduce @to_list {} entries;
-/* This would create a list-like structure from key-value pairs */
-```
-
-## Function Composition: The Power of Combination
-
-### Compose: Right-to-Left Composition
-
-`compose` combines functions so the output of one becomes the input of another:
-
-```plaintext
-/* Basic composition */
-double : x -> x * 2;
-increment : x -> x + 1;
-square : x -> x * x;
-
-/* Mathematical style: g then f */
-double_then_increment : compose @increment @double;
-result : double_then_increment 5;
-/* Result: 11 (5*2=10, then 10+1=11) */
-
-/* Complex composition chain */
-double_then_increment : compose @increment @double;
-process_number : compose @double_then_increment @square;
-result : process_number 3;
-/* Result: 19 (3^2=9, 9*2=18, 18+1=19) */
-
-/* Composition with different types */
-add_exclamation : x -> x + "!";
-format_number : compose @add_exclamation @double;
-result : format_number 5;
-/* Result: "10!" */
-```
-
-### Pipe: Left-to-Right Composition
-
-`pipe` is the opposite of `compose` - it flows left to right:
-
-```plaintext
-/* Pipeline style: f then g */
-increment_then_double : pipe @increment @double;
-result : increment_then_double 5;
-/* Result: 12 (5+1=6, then 6*2=12) */
-
-/* Data processing pipeline */
-data : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
-is_even : x -> x % 2 = 0;
-double : x -> x * 2;
-sum : x -> reduce @add 0 x;
-
-/* Pipeline: filter -> map -> reduce */
-filter_evens : filter @is_even;
-double_evens : map @double;
-sum_all : reduce @add 0;
-process_pipeline : pipe @sum_all @double_evens @filter_evens;
-result : process_pipeline data;
-/* Result: 60 (filter evens: {2,4,6,8,10}, double: {4,8,12,16,20}, sum: 60) */
-```
-
-### Via: Natural Composition Syntax
-
-The `via` operator provides a more natural composition syntax:
-
-```plaintext
-/* Using via for composition */
-double : x -> x * 2;
-increment : x -> x + 1;
-square : x -> x * x;
-
-/* Natural reading: double via increment via square */
-complex_transform : double via increment via square;
-result : complex_transform 3;
-/* Result: 19 (3^2=9, 9+1=10, 10*2=20) */
-
-/* Via with multiple functions */
-format_pipeline : double via increment via square;
-result : format_pipeline 2;
-/* Result: 10 (2^2=4, 4+1=5, 5*2=10) */
-```
-
-#### Understanding the `via` Operator
-
-The `via` operator is a **right-associative function composition operator** that translates to `compose` calls:
-
-```plaintext
-/* Translation examples */
-f via g                    → compose(f, g)
-f via g via h              → compose(f, compose(g, h))
-f via g via h via i        → compose(f, compose(g, compose(h, i)))
-```
-
-#### Right-Associative Behavior
-
-The `via` operator is **right-associative**, meaning it groups from right to left:
-
-```plaintext
-/* Right-associative grouping */
-double via increment via square
-
-/* Groups as: */
-double via (increment via square)
-
-/* Which translates to: */
-compose(double, compose(increment, square))
-
-/* Execution order: square → increment → double */
-```
-
-This matches mathematical function composition notation where `(f ∘ g ∘ h)(x) = f(g(h(x)))`.
-
-#### Precedence Rules
-
-The `via` operator has **higher precedence** than function application:
-
-```plaintext
-/* via binds tighter than function application */
-double via increment 5
-
-/* This is parsed as: */
-(double via increment) 5
-
-/* NOT as: */
-double via (increment 5)
-```
-
-#### Comparison with Other Composition Methods
-
-```plaintext
-/* Three ways to compose functions */
-
-/* 1. via operator (natural syntax) */
-result1 : double via increment via square 3;
-/* Result: 20 (3^2=9, 9+1=10, 10*2=20) */
-
-/* 2. compose function (mathematical style) */
-double_then_increment : compose @increment @double;
-complex_transform : compose @double_then_increment @square;
-result2 : complex_transform 3;
-/* Result: 19 (3^2=9, 9*2=18, 18+1=19) */
-
-/* 3. pipe function (pipeline style) */
-square_then_double : pipe @square @double;
-pipeline_transform : pipe @square_then_double @increment;
-result3 : pipeline_transform 3;
-/* Result: 19 (3^2=9, 9*2=18, 18+1=19) */
-```
-
-#### When to Use `via`
-
-Use the `via` operator when you want:
-
-1. **Natural reading**: `f via g via h` reads as "f then g then h"
-2. **Mathematical notation**: Matches `(f ∘ g ∘ h)` notation
-3. **Concise syntax**: Shorter than nested `compose` calls
-4. **Right-to-left flow**: When you think of data flowing right to left
-
-```plaintext
-/* Good use cases for via */
-
-/* Data transformation pipeline */
-process_data : filter @is_even via map @double via reduce @add 0;
-result : process_data {1, 2, 3, 4, 5, 6};
-/* Reads: filter evens, then double each, then sum all */
-
-/* String processing pipeline */
-format_text : to_upper via trim via replace_spaces;
-result : format_text "  hello world  ";
-/* Reads: replace spaces, then trim, then uppercase */
-
-/* Mathematical composition */
-complex_math : square via double via increment;
-result : complex_math 3;
-/* Reads: increment, then double, then square */
-```
-
-#### Common Patterns
-
-```plaintext
-/* Pattern 1: Data processing pipeline */
-data : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
-is_even : x -> x % 2 = 0;
-double : x -> x * 2;
-sum : x -> reduce @add 0 x;
-
-/* Pipeline: filter → map → reduce */
-process_pipeline : sum via map @double via filter @is_even;
-result : process_pipeline data;
-/* Result: 60 (filter evens: {2,4,6,8,10}, double: {4,8,12,16,20}, sum: 60) */
-
-/* Pattern 2: Validation chain */
-validate_name : user -> user.name != "";
-validate_age : user -> user.age > 0;
-validate_email : user -> user.email.contains "@";
-
-/* Chain validations */
-all_validations : validate_email via validate_age via validate_name;
-result : all_validations {name: "Alice", age: 25, email: "alice@test.com"};
-/* Result: true (all validations pass) */
-
-/* Pattern 3: Formatting pipeline */
-to_upper : x -> x.toUpperCase();
-add_prefix : prefix -> x -> prefix + ": " + x;
-format_label : add_prefix "Name" via to_upper;
-result : format_label "alice";
-/* Result: "Name: ALICE" */
-```
-
-#### Debugging `via` Chains
-
-```plaintext
-/* Add tracing to understand execution order */
-trace : name value -> {
-  ..out "[" + name + "]: " + value;
-  value
-};
-
-/* Trace each step in the pipeline */
-traced_pipeline : trace "final" via trace "double" via trace "filter" via trace "input";
-result : traced_pipeline {1, 2, 3, 4, 5};
-/* Output: [input]: {1,2,3,4,5}, [filter]: {2,4}, [double]: {4,8}, [final]: 12 */
-```
-
-#### Best Practices
-
-1. **Use `via` for natural reading**: When you want `f via g via h` to read as "f then g then h"
-2. **Use `compose` for mathematical style**: When you want explicit mathematical notation
-3. **Use `pipe` for pipeline style**: When you want left-to-right data flow
-4. **Keep chains readable**: Break long chains into named intermediate functions
-5. **Consider precedence**: Remember that `via` binds tighter than function application
-
-```plaintext
-/* Good: Clear and readable */
-process_data : sum via map @double via filter @is_even;
-
-/* Better: Named intermediate steps */
-filter_evens : filter @is_even;
-double_values : map @double;
-sum_all : reduce @add 0;
-process_data : sum_all via double_values via filter_evens;
-```
-
-### Advanced Composition Patterns
-
-Complex composition chains can also be built using nested `compose` and `pipe`:
-
-```plaintext
-/* Mathematical style: g then f then h */
-double_then_increment : compose @increment @double;
-complex_transform : compose @double_then_increment @square;
-result : complex_transform 3;
-/* Result: 19 (3^2=9, 9*2=18, 18+1=19) */
-
-/* Pipeline style: f then g then h */
-square_then_double : pipe @square @double;
-pipeline_transform : pipe @square_then_double @increment;
-result : pipeline_transform 3;
-/* Result: 19 (3^2=9, 9*2=18, 18+1=19) */
-```
-
-## Each: Multi-Argument Element-Wise Operations
-
-`each` is designed for combining multiple collections element-wise:
-
-```plaintext
-/* Element-wise addition */
-table1 : {a: 1, b: 2, c: 3};
-table2 : {a: 10, b: 20, c: 30};
-sum : each @add table1 table2;
-/* Result: {a: 11, b: 22, c: 33} */
-
-/* Adding scalar to each element */
-numbers : {1, 2, 3, 4, 5};
-incremented : each @add numbers 10;
-/* Result: {11, 12, 13, 14, 15} */
-
-/* Complex element-wise operations */
-people : {
-  alice: {name: "Alice", age: 25},
-  bob: {name: "Bob", age: 30}
-};
-bonuses : {
-  alice: 1000,
-  bob: 1500
-};
-add_bonus : person bonus -> {
-  name: person.name,
-  age: person.age,
-  salary: person.age * 1000 + bonus
-};
-with_bonuses : each @add_bonus people bonuses;
-/* Result: {alice: {name: "Alice", age: 25, salary: 26000}, ...} */
-```
-
-## Problem-Solving Patterns
-
-### Pattern 1: Data Transformation Pipeline
-
-Transform data through multiple stages:
-
-```plaintext
-/* Problem: Process a list of numbers */
-/* 1. Filter out negative numbers */
-/* 2. Double each remaining number */
-/* 3. Sum all results */
-
-data : {-3, -1, 0, 2, 4, 6, -2, 8};
-
-/* Step-by-step approach */
-is_positive : x -> x > 0;
-double : x -> x * 2;
-sum : x -> reduce @add 0 x;
-
-positive : filter @is_positive data;
-doubled : map @double positive;
-total : sum doubled;
-
-/* Or as a composition */
-process_data : compose @sum @map @double @filter @is_positive;
-total : process_data data;
-/* Result: 40 (positive: {2,4,6,8}, doubled: {4,8,12,16}, sum: 40) */
-```
-
-### Pattern 2: Table Aggregation
-
-Extract and aggregate data from complex structures:
-
-```plaintext
-/* Problem: Calculate average salary by department */
-employees : {
-  alice: {name: "Alice", dept: "Engineering", salary: 80000},
-  bob: {name: "Bob", dept: "Sales", salary: 60000},
-  charlie: {name: "Charlie", dept: "Engineering", salary: 90000},
-  diana: {name: "Diana", dept: "Sales", salary: 65000},
-  eve: {name: "Eve", dept: "Engineering", salary: 85000}
-};
-
-/* Extract department and salary */
-get_dept_salary : emp -> {dept: emp.dept, salary: emp.salary};
-dept_salaries : map @get_dept_salary employees;
-
-/* Group by department (simplified) */
-engineering : filter @is_engineering dept_salaries;
-sales : filter @is_sales dept_salaries;
-
-is_engineering : entry -> entry.dept = "Engineering";
-is_sales : entry -> entry.sales = "Sales";
-
-/* Calculate averages */
-get_salary : entry -> entry.salary;
-eng_salaries : map @get_salary engineering;
-sales_salaries : map @get_salary sales;
-eng_total : reduce @add 0 eng_salaries;
-sales_total : reduce @add 0 sales_salaries;
-/* Note: Division would require additional arithmetic functions */
-```
-
-### Pattern 3: Conditional Transformation
-
-Apply different transformations based on conditions:
-
-```plaintext
-/* Problem: Format different types of data */
-data : {
-  user1: {type: "admin", name: "Alice", level: 5},
-  user2: {type: "user", name: "Bob", level: 2},
-  user3: {type: "guest", name: "Charlie", level: 1}
-};
-
-/* Define transformation based on type */
-format_user : user -> 
-  when user.type is
-    "admin" then {
-      display: "👑 " + user.name,
-      access: "full",
-      level: user.level * 10
-    }
-    "user" then {
-      display: "👤 " + user.name,
-      access: "limited",
-      level: user.level * 5
-    }
-    _ then {
-      display: "👻 " + user.name,
-      access: "readonly",
-      level: 1
-    };
-
-/* Apply transformation to all users */
-formatted : map @format_user data;
-```
-
-### Pattern 4: Recursive Combinators
-
-Build recursive patterns using combinators:
-
-```plaintext
-/* Problem: Flatten nested tables */
-nested : {
-  level1: {
-    a: {value: 1},
-    b: {value: 2}
-  },
-  level2: {
-    c: {value: 3}
-  }
-};
-
-/* Recursive flattening function */
-flatten : table -> 
-  when (t.has table "value") is
-    true then table
-    _ then reduce @t.merge {} (map @flatten_entry table);
-
-flatten_entry : entry -> 
-  when (t.has entry "value") is
-    true then entry
-    _ then flatten entry;
-
-/* Apply flattening */
-flat : flatten nested;
-/* Result: {a: {value: 1}, b: {value: 2}, c: {value: 3}} */
-```
-
-## Advanced Combinator Patterns
-
-### Partial Application and Currying
-
-Create specialized functions from general ones:
-
-```plaintext
-/* Basic partial application */
-add : x y -> x + y;
-add_ten : add 10;
-result : add_ten 5;
-/* Result: 15 */
-
-/* Complex partial application */
-format_with_prefix : prefix value -> prefix + ": " + value;
-format_name : format_with_prefix "Name";
-format_age : format_with_prefix "Age";
-
-person : {name: "Alice", age: 30};
-formatted_name : format_name person.name;
-formatted_age : format_age person.age;
-/* Results: "Name: Alice", "Age: 30" */
-
-/* Currying with combinators */
-multiply_by : x y -> x * y;
-double : multiply_by 2;
-triple : multiply_by 3;
-
-numbers : {1, 2, 3, 4, 5};
-doubled : map @double numbers;
-tripled : map @triple numbers;
-```
-
-### Higher-Order Combinators
-
-Combinators that work with other combinators:
-
-```plaintext
-/* Apply a combinator to multiple collections */
-apply_to_all : combinator collections -> 
-  reduce @t.merge {} (map @combinator collections);
-
-/* Example usage */
-add_one : x -> x + 1;
-collections : {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
-all_incremented : apply_to_all @map @add_one collections;
-
-/* Compose multiple functions */
-compose_many : functions -> 
-  reduce @compose @identity functions;
-
-/* Example usage */
-double_then_increment : compose @increment @double;
-complex_transform : compose @double_then_increment @square;
-result : complex_transform 3;
-/* Result: 19 (3^2=9, 9*2=18, 18+1=19) */
-```
-
-### Memoization Pattern
-
-Cache function results for performance:
-
-```plaintext
-/* Simple memoization */
-memoize : f -> {
-  cache: {},
-  compute: x -> 
-    when (t.has cache x) is
-      true then t.get cache x "not_found"
-      _ then {
-        result: f x,
-        new_cache: t.set cache x (f x)
-      }
-};
-
-/* Using memoized function */
-expensive_calc : x -> {
-  /* Simulate expensive computation */
-  x * x * x
-};
-
-memoized_calc : memoize @expensive_calc;
-result1 : memoized_calc.compute 5;
-result2 : memoized_calc.compute 5; /* Uses cached result */
-```
-
-## Real-World Problem Solving
-
-### Example 1: E-commerce Order Processing
-
-```plaintext
-/* Process customer orders */
-orders : {
-  order1: {customer: "Alice", items: {book: 2, pen: 5}, status: "pending"},
-  order2: {customer: "Bob", items: {laptop: 1}, status: "shipped"},
-  order3: {customer: "Charlie", items: {book: 1, pen: 3}, status: "pending"}
-};
-
-prices : {book: 15, pen: 2, laptop: 800};
-
-/* Calculate order totals */
-calculate_total : order -> {
-  customer: order.customer,
-  total: reduce @add 0 (map @calculate_item_total order.items),
-  status: order.status
-};
-
-calculate_item_total : item quantity -> 
-  when item is
-    "book" then 15 * quantity
-    "pen" then 2 * quantity
-    "laptop" then 800 * quantity
-    _ then 0;
-
-/* Process all orders */
-processed_orders : map @calculate_total orders;
-
-/* Filter pending orders */
-is_pending : order -> order.status = "pending";
-pending_orders : filter @is_pending processed_orders;
-
-/* Get total revenue from pending orders */
-get_total : order -> order.total;
-total_revenue : reduce @add 0 (map @get_total pending_orders);
-```
-
-### Example 2: Data Validation Pipeline
-
-```plaintext
-/* Validate user input data */
-users : {
-  user1: {name: "Alice", email: "alice@example.com", age: 25},
-  user2: {name: "", email: "invalid-email", age: -5},
-  user3: {name: "Charlie", email: "charlie@test.com", age: 30}
-};
-
-/* Simple validation example */
-is_valid_name : user -> 
-  when user.name = "" is
-    true then false
-    _ then true;
-
-is_valid_age : user -> 
-  when user.age > 0 is
-    true then true
-    _ then false;
-
-/* Apply validation to all users */
-valid_names : map @is_valid_name users;
-valid_ages : map @is_valid_age users;
-```
-
-## Performance Considerations
-
-### Lazy Evaluation Patterns
-
-```plaintext
-/* Process large datasets efficiently */
-large_dataset : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
-
-/* Process in chunks */
-chunk_size : 3;
-process_chunk : chunk -> map @double chunk;
-
-/* Process data in smaller batches */
-batch1 : {1, 2, 3};
-batch2 : {4, 5, 6};
-batch3 : {7, 8, 9, 10};
-
-processed_batch1 : process_chunk batch1;
-processed_batch2 : process_chunk batch2;
-processed_batch3 : process_chunk batch3;
-/* Combine results manually since we don't have array operations */
-```
-
-### Memory-Efficient Patterns
-
-```plaintext
-/* Stream processing pattern */
-stream_process : data -> 
-  compose @reduce @add 0 @map @double @filter @is_even data;
-
-/* This processes each element once through the pipeline */
-/* No intermediate results are stored */
-```
-
-## Debugging Combinator Chains
-
-### Tracing Function Applications
-
-```plaintext
-/* Add tracing to functions */
-trace : name value -> {
-  ..out "[" + name + "]: " + value;
-  value
-};
-
-/* Use in composition */
-traced_double : compose @trace "double" @double;
-traced_increment : compose @trace "increment" @increment;
-traced_square : compose @trace "square" @square;
-
-/* Trace the entire pipeline */
-traced_pipeline : compose @traced_increment @traced_double @traced_square;
-result : traced_pipeline 3;
-/* Output: [square]: 9, [double]: 18, [increment]: 19 */
-```
-
-### Visualizing Data Flow
-
-```plaintext
-/* Create visualization of data transformations */
-visualize_step : step_name data -> {
-  ..out "=== " + step_name + " ===";
-  ..out "Input: " + data;
-  result: data
-};
-
-/* Use in pipeline */
-visualized_pipeline : compose 
-  @visualize_step "Final Result"
-  @map @double
-  @visualize_step "After Filter"
-  @filter @is_even
-  @visualize_step "Initial Data";
-
-result : visualized_pipeline {1, 2, 3, 4, 5, 6};
-```
-
-## Best Practices Summary
-
-### 1. Think in Transformations
-```plaintext
-/* Instead of: "Loop through and modify" */
-/* Think: "Transform this into that" */
-```
-
-### 2. Compose, Don't Nest
-```plaintext
-/* Good: Clear composition */
-pipeline : compose @step3 @step2 @step1;
-
-/* Avoid: Deep nesting */
-result : step3(step2(step1(data)));
-```
-
-### 3. Use Partial Application
-```plaintext
-/* Create specialized functions */
-specialized : general_function specific_value;
-```
-
-### 4. Leverage Immutability
-```plaintext
-/* Always return new data, never modify existing */
-new_data : transform_function old_data;
-```
-
-### 5. Build Reusable Patterns
-```plaintext
-/* Create patterns you can reuse */
-validation_pipeline : compose @validate3 @validate2 @validate1;
-```
-
-## Next Steps
-
-You now have a deep understanding of combinators and functional problem-solving! To continue your journey:
-
-1. **Practice**: Try implementing the examples above
-2. **Experiment**: Create your own combinator patterns
-3. **Optimize**: Look for opportunities to compose functions
-4. **Extend**: Build your own specialized combinators
-5. **Share**: Document patterns you discover
-
-The power of combinators comes from their composability. Start simple, build up complexity through composition, and always think in terms of data transformations rather than step-by-step instructions.
\ No newline at end of file