about summary refs log tree commit diff stats
path: root/js/sentiment/SCRATCH.md
diff options
context:
space:
mode:
Diffstat (limited to 'js/sentiment/SCRATCH.md')
-rw-r--r--js/sentiment/SCRATCH.md8
1 files changed, 8 insertions, 0 deletions
diff --git a/js/sentiment/SCRATCH.md b/js/sentiment/SCRATCH.md
new file mode 100644
index 0000000..d5d4ca3
--- /dev/null
+++ b/js/sentiment/SCRATCH.md
@@ -0,0 +1,8 @@
+<https://getthematic.com/sentiment-analysis#how-does-sentiment-analysis-work>
+
+# Rule-based sentiment analysis works like this:
+
+1. “Lexicons” or lists of positive and negative words are created. These are words that are used to describe sentiment. For example, positive lexicons might include “fast”, “affordable”, and “user-friendly“. Negative lexicons could include “slow”, “pricey”, and “complicated”.
+2. Before text can be analyzed it needs to be prepared. Several processes are used to format the text in a way that a machine can understand. Tokenization breaks up text into small chunks called tokens. Sentence tokenization splits up text into sentences. Word tokenization separates words in a sentence. For example, “the best customer service” would be split into “the”, “best”, and “customer service”. Lemmatization can be used to transforms words back to their root form. A lemma is the root form of a word. For example, the root form of “is, are, am, were, and been” is “be”. We also want to exclude things which are known but are not useful for sentiment analysis. So another important process is stopword removal which takes out common words like “for, at, a, to”. These words have little or no semantic value in the sentence. Applying these processes makes it easier for computers to understand the text.
+3. A computer counts the number of positive or negative words in a particular text. A special rule can make sure that negated words, e.g. “not easy”, are counted as opposites.
+4. The final step is to calculate the overall sentiment score for the text. As mentioned previously, this could be based on a scale of -100 to 100. In this case a score of 100 would be the highest score possible for positive sentiment. A score of 0 would indicate neutral sentiment. The score can also be expressed as a percentage, ranging from 0% as negative and 100% as positive.
\ No newline at end of file
n> ^
ba3f04ea ^
a6791aee ^




ba3f04ea ^
a6791aee ^
ba3f04ea ^
a6791aee ^






ba3f04ea ^
a6791aee ^
a6791aee ^
ea87d005 ^
a6791aee ^




42fd3690 ^


ea87d005 ^
a6791aee ^





d88232a3 ^
1159f9ec ^
c1033553 ^
1159f9ec ^






42fd3690 ^
a6791aee ^

49ae0dd1 ^



42fd3690 ^
3f77e62a ^
d88232a3 ^
42fd3690 ^

d88232a3 ^
c1033553 ^



d88232a3 ^



3d625436 ^
d88232a3 ^
49ae0dd1 ^
0cfc59d6 ^

b4b0eb24 ^

49ae0dd1 ^
1159f9ec ^

49ae0dd1 ^
1159f9ec ^

49ae0dd1 ^
ea87d005 ^
49ae0dd1 ^

d88232a3 ^
42fd3690 ^

b4b0eb24 ^


d88232a3 ^

0cfc59d6 ^

b4b0eb24 ^

d88232a3 ^

3e092587 ^



d3eff0a9 ^

d88232a3 ^

0cfc59d6 ^

b4b0eb24 ^

d88232a3 ^


0cfc59d6 ^

b4b0eb24 ^

d88232a3 ^
d621586e ^


42fd3690 ^


d88232a3 ^
42fd3690 ^

ea87d005 ^
d88232a3 ^
0cfc59d6 ^

b4b0eb24 ^

d88232a3 ^



06fa4ce8 ^
d88232a3 ^




a923ead7 ^




d88232a3 ^
1159f9ec ^
f7819821 ^
1159f9ec ^
23c450bf ^

c1033553 ^
d88232a3 ^
f7819821 ^
d88232a3 ^

f7819821 ^
d88232a3 ^

f7819821 ^
d88232a3 ^
42fd3690 ^

3f77e62a ^
42fd3690 ^



b19e53f9 ^
b19e53f9 ^

3f77e62a ^


17f83af2 ^
3f77e62a ^

23c450bf ^
f7819821 ^
3f77e62a ^
d3eff0a9 ^

42fd3690 ^




23c450bf ^



3f77e62a ^
42fd3690 ^

17f83af2 ^
d3eff0a9 ^

ea87d005 ^
42fd3690 ^

d88232a3 ^

a6791aee ^



ba3f04ea ^
a6791aee ^











1159f9ec ^







d88232a3 ^

a6791aee ^
ea87d005 ^
ba3f04ea ^
a6791aee ^
d621586e ^
d88232a3 ^
42fd3690 ^
d88232a3 ^
d621586e ^




42fd3690 ^

d88232a3 ^


42fd3690 ^

d88232a3 ^
d621586e ^
d88232a3 ^


d88232a3 ^


a6791aee ^
d88232a3 ^




49ae0dd1 ^
d88232a3 ^

a6791aee ^
1159f9ec ^
d88232a3 ^
49ae0dd1 ^

ad558722 ^
49ae0dd1 ^


d88232a3 ^

d88232a3 ^




a6791aee ^







ea87d005 ^
a6791aee ^


aaf7252b ^
a6791aee ^



ea87d005 ^
a6791aee ^












1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333