about summary refs log tree commit diff stats
path: root/js/magic-bird/imgs/extracted-1688-map/MapPartsWhite/towns_white/104.png
Commit message (Expand)AuthorAgeFilesLines
* *elioat2024-01-151-0/+0
d='n8' href='#n8'>8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647






































































































































































































































































































































































































































































































































































































































































                                                                               
#
#
#            Nimrod's Runtime Library
#        (c) Copyright 2009 Andreas Rumpf
#
#    See the file "copying.txt", included in this
#    distribution, for details about the copyright.
#


#            Garbage Collector
#
# The basic algorithm is *Deferrent Reference Counting* with cycle detection.
# Special care has been taken to avoid recursion as far as possible to avoid
# stack overflows when traversing deep datastructures. This is comparable to
# an incremental and generational GC. It should be well-suited for soft real
# time applications (like games).
#
# Future Improvements:
# * Support for multi-threading. However, locks for the reference counting
#   might turn out to be too slow.

const
  CycleIncrease = 2 # is a multiplicative increase
  InitialCycleThreshold = 4*1024*1024 # X MB because cycle checking is slow
  ZctThreshold = 256  # we collect garbage if the ZCT's size
                      # reaches this threshold
                      # this seems to be a good value

const
  rcIncrement = 0b1000 # so that lowest 3 bits are not touched
  # NOTE: Most colors are currently unused
  rcBlack = 0b000  # cell is colored black; in use or free
  rcGray = 0b001   # possible member of a cycle
  rcWhite = 0b010  # member of a garbage cycle
  rcPurple = 0b011 # possible root of a cycle
  rcZct = 0b100    # in ZCT
  rcRed = 0b101    # Candidate cycle undergoing sigma-computation
  rcOrange = 0b110 # Candidate cycle awaiting epoch boundary
  rcShift = 3      # shift by rcShift to get the reference counter
  colorMask = 0b111
type
  TWalkOp = enum
    waZctDecRef, waPush, waCycleDecRef

  TFinalizer {.compilerproc.} = proc (self: pointer)
    # A ref type can have a finalizer that is called before the object's
    # storage is freed.

  TGcStat {.final, pure.} = object
    stackScans: int          # number of performed stack scans (for statistics)
    cycleCollections: int    # number of performed full collections
    maxThreshold: int        # max threshold that has been set
    maxStackSize: int        # max stack size
    maxStackCells: int       # max stack cells in ``decStack``
    cycleTableSize: int      # max entries in cycle table  
  
  TGcHeap {.final, pure.} = object # this contains the zero count and
                                   # non-zero count table
    zct: TCellSeq            # the zero count table
    decStack: TCellSeq       # cells in the stack that are to decref again
    cycleRoots: TCellSet
    tempStack: TCellSeq      # temporary stack for recursion elimination
    stat: TGcStat

var
  stackBottom: pointer
  gch: TGcHeap
  cycleThreshold: int = InitialCycleThreshold
  recGcLock: int = 0
    # we use a lock to prevend the garbage collector to be triggered in a
    # finalizer; the collector should not call itself this way! Thus every
    # object allocated by a finalizer will not trigger a garbage collection.
    # This is wasteful but safe. This is a lock against recursive garbage
    # collection, not a lock for threads!

proc unsureAsgnRef(dest: ppointer, src: pointer) {.compilerproc.}
  # unsureAsgnRef updates the reference counters only if dest is not on the
  # stack. It is used by the code generator if it cannot decide wether a
  # reference is in the stack or not (this can happen for var parameters).
#proc growObj(old: pointer, newsize: int): pointer {.compilerproc.}
proc newObj(typ: PNimType, size: int): pointer {.compilerproc.}
proc newSeq(typ: PNimType, len: int): pointer {.compilerproc.}

proc addZCT(s: var TCellSeq, c: PCell) {.noinline.} =
  if (c.refcount and rcZct) == 0:
    c.refcount = c.refcount and not colorMask or rcZct
    add(s, c)

proc cellToUsr(cell: PCell): pointer {.inline.} =
  # convert object (=pointer to refcount) to pointer to userdata
  result = cast[pointer](cast[TAddress](cell)+%TAddress(sizeof(TCell)))

proc usrToCell(usr: pointer): PCell {.inline.} =
  # convert pointer to userdata to object (=pointer to refcount)
  result = cast[PCell](cast[TAddress](usr)-%TAddress(sizeof(TCell)))

proc canbeCycleRoot(c: PCell): bool {.inline.} =
  result = ntfAcyclic notin c.typ.flags

proc extGetCellType(c: pointer): PNimType {.compilerproc.} =
  # used for code generation concerning debugging
  result = usrToCell(c).typ

proc internRefcount(p: pointer): int {.exportc: "getRefcount".} =
  result = int(usrToCell(p).refcount) shr rcShift

proc GC_disable() = inc(recGcLock)
proc GC_enable() =
  if recGcLock > 0: dec(recGcLock)

proc GC_setStrategy(strategy: TGC_Strategy) =
  case strategy
  of gcThroughput: nil
  of gcResponsiveness: nil
  of gcOptimizeSpace: nil
  of gcOptimizeTime: nil

proc GC_enableMarkAndSweep() =
  cycleThreshold = InitialCycleThreshold

proc GC_disableMarkAndSweep() =
  cycleThreshold = high(cycleThreshold)-1
  # set to the max value to suppress the cycle detector

# this that has to equals zero, otherwise we have to round up UnitsPerPage:
when BitsPerPage mod (sizeof(int)*8) != 0:
  {.error: "(BitsPerPage mod BitsPerUnit) should be zero!".}

when debugGC:
  proc writeCell(msg: CString, c: PCell) =
    var kind = -1
    if c.typ != nil: kind = ord(c.typ.kind)
    when debugGC:
      c_fprintf(c_stdout, "[GC] %s: %p %d rc=%ld from %s(%ld)\n",
                msg, c, kind, c.refcount shr rcShift, c.filename, c.line)
    else:
      c_fprintf(c_stdout, "[GC] %s: %p %d rc=%ld\n",
                msg, c, kind, c.refcount shr rcShift)

when traceGC:
  # traceGC is a special switch to enable extensive debugging
  type
    TCellState = enum
      csAllocated, csZctFreed, csCycFreed
  var
    states: array[TCellState, TCellSet]

  proc traceCell(c: PCell, state: TCellState) =
    case state
    of csAllocated:
      if c in states[csAllocated]:
        writeCell("attempt to alloc an already allocated cell", c)
        assert(false)
      excl(states[csCycFreed], c)
      excl(states[csZctFreed], c)
    of csZctFreed:
      if c in states[csZctFreed]:
        writeCell("attempt to free zct cell twice", c)
        assert(false)
      if c in states[csCycFreed]:
        writeCell("attempt to free with zct, but already freed with cyc", c)
        assert(false)
      if c notin states[csAllocated]:
        writeCell("attempt to free not an allocated cell", c)
        assert(false)
      excl(states[csAllocated], c)
    of csCycFreed:
      if c notin states[csAllocated]:
        writeCell("attempt to free a not allocated cell", c)
        assert(false)
      if c in states[csCycFreed]:
        writeCell("attempt to free cyc cell twice", c)
        assert(false)
      if c in states[csZctFreed]:
        writeCell("attempt to free with cyc, but already freed with zct", c)
        assert(false)
      excl(states[csAllocated], c)
    incl(states[state], c)

  proc writeLeakage() =
    var z = 0
    var y = 0
    var e = 0
    for c in elements(states[csAllocated]):
      inc(e)
      if c in states[csZctFreed]: inc(z)
      elif c in states[csCycFreed]: inc(z)
      else: writeCell("leak", c)
    cfprintf(cstdout, "Allocations: %ld; ZCT freed: %ld; CYC freed: %ld\n",
             e, z, y)

template gcTrace(cell, state: expr): stmt =
  when traceGC: traceCell(cell, state)

# -----------------------------------------------------------------------------

# forward declarations:
proc collectCT(gch: var TGcHeap)
proc IsOnStack(p: pointer): bool {.noinline.}
proc forAllChildren(cell: PCell, op: TWalkOp)
proc doOperation(p: pointer, op: TWalkOp)
proc forAllChildrenAux(dest: Pointer, mt: PNimType, op: TWalkOp)
# we need the prototype here for debugging purposes

proc prepareDealloc(cell: PCell) =
  if cell.typ.finalizer != nil:
    # the finalizer could invoke something that
    # allocates memory; this could trigger a garbage
    # collection. Since we are already collecting we
    # prevend recursive entering here by a lock.
    # XXX: we should set the cell's children to nil!
    inc(recGcLock)
    (cast[TFinalizer](cell.typ.finalizer))(cellToUsr(cell))
    dec(recGcLock)

proc setStackBottom(theStackBottom: pointer) {.compilerproc.} =
  stackBottom = theStackBottom

proc PossibleRoot(gch: var TGcHeap, c: PCell) {.inline.} =
  if canbeCycleRoot(c): incl(gch.cycleRoots, c)

proc decRef(c: PCell) {.inline.} =
  when stressGC:
    if c.refcount <% rcIncrement:
      writeCell("broken cell", c)
  assert(c.refcount >=% rcIncrement)
  c.refcount = c.refcount -% rcIncrement
  if c.refcount <% rcIncrement:
    addZCT(gch.zct, c)
  elif canBeCycleRoot(c):
    incl(gch.cycleRoots, c) 

proc incRef(c: PCell) {.inline.} = 
  c.refcount = c.refcount +% rcIncrement
  if canBeCycleRoot(c):
    incl(gch.cycleRoots, c)

proc nimGCref(p: pointer) {.compilerproc, inline.} = incRef(usrToCell(p))
proc nimGCunref(p: pointer) {.compilerproc, inline.} = decRef(usrToCell(p))

proc asgnRef(dest: ppointer, src: pointer) {.compilerproc, inline.} =
  # the code generator calls this proc!
  assert(not isOnStack(dest))
  # BUGFIX: first incRef then decRef!
  if src != nil: incRef(usrToCell(src))
  if dest^ != nil: decRef(usrToCell(dest^))
  dest^ = src

proc asgnRefNoCycle(dest: ppointer, src: pointer) {.compilerproc, inline.} =
  # the code generator calls this proc if it is known at compile time that no 
  # cycle is possible.
  if src != nil: 
    var c = usrToCell(src)
    c.refcount = c.refcount +% rcIncrement
  if dest^ != nil: 
    var c = usrToCell(dest^)
    c.refcount = c.refcount -% rcIncrement
    if c.refcount <% rcIncrement:
      addZCT(gch.zct, c)
  dest^ = src

proc unsureAsgnRef(dest: ppointer, src: pointer) =
  if not IsOnStack(dest):
    if src != nil: incRef(usrToCell(src))
    if dest^ != nil: decRef(usrToCell(dest^))
  dest^ = src

proc initGC() =
  when traceGC:
    for i in low(TCellState)..high(TCellState): Init(states[i])
  gch.stat.stackScans = 0
  gch.stat.cycleCollections = 0
  gch.stat.maxThreshold = 0
  gch.stat.maxStackSize = 0
  gch.stat.maxStackCells = 0
  gch.stat.cycleTableSize = 0
  # init the rt
  init(gch.zct)
  init(gch.tempStack)
  Init(gch.cycleRoots)
  Init(gch.decStack)
  new(gOutOfMem) # reserve space for the EOutOfMemory exception here!

proc forAllSlotsAux(dest: pointer, n: ptr TNimNode, op: TWalkOp) =
  var d = cast[TAddress](dest)
  case n.kind
  of nkNone: assert(false)
  of nkSlot: forAllChildrenAux(cast[pointer](d +% n.offset), n.typ, op)
  of nkList:
    for i in 0..n.len-1: forAllSlotsAux(dest, n.sons[i], op)
  of nkCase:
    var m = selectBranch(dest, n)
    if m != nil: forAllSlotsAux(dest, m, op)

proc forAllChildrenAux(dest: Pointer, mt: PNimType, op: TWalkOp) =
  var d = cast[TAddress](dest)
  if dest == nil: return # nothing to do
  if ntfNoRefs notin mt.flags:
    case mt.Kind
    of tyArray, tyArrayConstr, tyOpenArray:
      for i in 0..(mt.size div mt.base.size)-1:
        forAllChildrenAux(cast[pointer](d +% i *% mt.base.size), mt.base, op)
    of tyRef, tyString, tySequence: # leaf:
      doOperation(cast[ppointer](d)^, op)
    of tyObject, tyTuple, tyPureObject:
      forAllSlotsAux(dest, mt.node, op)
    else: nil

proc forAllChildren(cell: PCell, op: TWalkOp) =
  assert(cell != nil)
  assert(cell.typ != nil)
  case cell.typ.Kind
  of tyRef: # common case
    forAllChildrenAux(cellToUsr(cell), cell.typ.base, op)
  of tySequence:
    var d = cast[TAddress](cellToUsr(cell))
    var s = cast[PGenericSeq](d)
    if s != nil:
      for i in 0..s.len-1:
        forAllChildrenAux(cast[pointer](d +% i *% cell.typ.base.size +%
          GenericSeqSize), cell.typ.base, op)
  of tyString: nil
  else: assert(false)

proc checkCollection {.inline.} =
  # checks if a collection should be done
  if recGcLock == 0:
    collectCT(gch)

proc newObj(typ: PNimType, size: int): pointer =
  # generates a new object and sets its reference counter to 0
  assert(typ.kind in {tyRef, tyString, tySequence})
  checkCollection()
  var res = cast[PCell](rawAlloc(allocator, size + sizeof(TCell)))
  zeroMem(res, size+sizeof(TCell))
  assert((cast[TAddress](res) and (MemAlign-1)) == 0)
  # now it is buffered in the ZCT
  res.typ = typ
  when debugGC:
    if framePtr != nil and framePtr.prev != nil:
      res.filename = framePtr.prev.filename
      res.line = framePtr.prev.line
  res.refcount = rcZct # refcount is zero, but mark it to be in the ZCT  
  assert(isAllocatedPtr(allocator, res))
  # its refcount is zero, so add it to the ZCT:
  block addToZCT: 
    # we check the last 8 entries (cache line) for a slot
    # that could be reused
    var L = gch.zct.len
    var d = gch.zct.d
    for i in countdown(L-1, max(0, L-8)):
      var c = d[i]
      if c.refcount >=% rcIncrement:
        c.refcount = c.refcount and not colorMask
        d[i] = res
        break addToZCT
    add(gch.zct, res)
  when logGC: writeCell("new cell", res)
  gcTrace(res, csAllocated)
  result = cellToUsr(res)

proc newSeq(typ: PNimType, len: int): pointer =
  result = newObj(typ, addInt(mulInt(len, typ.base.size), GenericSeqSize))
  cast[PGenericSeq](result).len = len
  cast[PGenericSeq](result).space = len

proc growObj(old: pointer, newsize: int): pointer =
  checkCollection()
  var ol = usrToCell(old)
  assert(ol.typ != nil)
  assert(ol.typ.kind in {tyString, tySequence})
  var res = cast[PCell](rawAlloc(allocator, newsize + sizeof(TCell)))
  var elemSize = 1
  if ol.typ.kind != tyString:
    elemSize = ol.typ.base.size
  
  var oldsize = cast[PGenericSeq](old).len*elemSize + GenericSeqSize
  copyMem(res, ol, oldsize + sizeof(TCell))
  zeroMem(cast[pointer](cast[TAddress](res)+% oldsize +% sizeof(TCell)),
          newsize-oldsize)
  assert((cast[TAddress](res) and (MemAlign-1)) == 0)
  assert(res.refcount shr rcShift <=% 1)
  #if res.refcount <% rcIncrement:
  #  add(gch.zct, res)
  #else: # XXX: what to do here?
  #  decRef(ol)
  if (ol.refcount and colorMask) == rcZct:
    var j = gch.zct.len-1
    var d = gch.zct.d
    while j >= 0: 
      if d[j] == ol:
        d[j] = res
        break
      dec(j)
  if canBeCycleRoot(ol): excl(gch.cycleRoots, ol)
  when logGC:
    writeCell("growObj old cell", ol)
    writeCell("growObj new cell", res)
  gcTrace(ol, csZctFreed)
  gcTrace(res, csAllocated)
  when reallyDealloc: rawDealloc(allocator, ol)
  else:
    assert(ol.typ != nil)
    zeroMem(ol, sizeof(TCell))
  result = cellToUsr(res)

# ---------------- cycle collector -------------------------------------------

proc doOperation(p: pointer, op: TWalkOp) =
  if p == nil: return
  var c: PCell = usrToCell(p)
  assert(c != nil)
  case op # faster than function pointers because of easy prediction
  of waZctDecRef:
    assert(c.refcount >=% rcIncrement)
    c.refcount = c.refcount -% rcIncrement
    when logGC: writeCell("decref (from doOperation)", c)
    if c.refcount <% rcIncrement: addZCT(gch.zct, c)
  of waPush:
    add(gch.tempStack, c)
  of waCycleDecRef:
    assert(c.refcount >=% rcIncrement)
    c.refcount = c.refcount -% rcIncrement

# we now use a much simpler and non-recursive algorithm for cycle removal
proc collectCycles(gch: var TGcHeap) =
  var tabSize = 0
  for c in elements(gch.cycleRoots):
    inc(tabSize)
    forallChildren(c, waCycleDecRef)
  gch.stat.cycleTableSize = max(gch.stat.cycleTableSize, tabSize)

  # restore reference counts (a depth-first traversal is needed):
  var marker: TCellSet
  Init(marker)
  for c in elements(gch.cycleRoots):
    if c.refcount >=% rcIncrement:
      if not containsOrIncl(marker, c):
        gch.tempStack.len = 0
        forAllChildren(c, waPush)
        while gch.tempStack.len > 0:
          dec(gch.tempStack.len)
          var d = gch.tempStack.d[gch.tempStack.len]
          d.refcount = d.refcount +% rcIncrement
          if d in gch.cycleRoots and not containsOrIncl(marker, d):
            forAllChildren(d, waPush)
  # remove cycles:
  for c in elements(gch.cycleRoots):
    if c.refcount <% rcIncrement:
      gch.tempStack.len = 0
      forAllChildren(c, waPush)
      while gch.tempStack.len > 0:
        dec(gch.tempStack.len)
        var d = gch.tempStack.d[gch.tempStack.len]
        if d.refcount <% rcIncrement:
          if d notin gch.cycleRoots: # d is leaf of c and not part of cycle
            addZCT(gch.zct, d)
            when logGC: writeCell("add to ZCT (from cycle collector)", d)
      prepareDealloc(c)
      gcTrace(c, csCycFreed)
      when logGC: writeCell("cycle collector dealloc cell", c)
      when reallyDealloc: rawDealloc(allocator, c)
      else:
        assert(c.typ != nil)
        zeroMem(c, sizeof(TCell))
  Deinit(gch.cycleRoots)
  Init(gch.cycleRoots)

proc gcMark(p: pointer) {.inline.} =
  # the addresses are not as cells on the stack, so turn them to cells:
  var cell = usrToCell(p)
  var c = cast[TAddress](cell)
  if c >% PageSize and (c and (MemAlign-1)) == 0:
    # fast check: does it look like a cell?
    if isAllocatedPtr(allocator, cell): 
      # mark the cell:
      cell.refcount = cell.refcount +% rcIncrement
      add(gch.decStack, cell)

# ----------------- stack management --------------------------------------
#  inspired from Smart Eiffel

proc stackSize(): int {.noinline.} =
  var stackTop: array[0..1, pointer]
  result = abs(cast[int](addr(stackTop[0])) - cast[int](stackBottom))

when defined(sparc): # For SPARC architecture.
  proc isOnStack(p: pointer): bool =
    var stackTop: array [0..1, pointer]
    var b = cast[TAddress](stackBottom)
    var a = cast[TAddress](addr(stackTop[0]))
    var x = cast[TAddress](p)
    result = x >=% a and x <=% b

  proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} =
    when defined(sparcv9):
      asm  """"flushw \n" """
    else:
      asm  """"ta      0x3   ! ST_FLUSH_WINDOWS\n" """

    var
      max = stackBottom
      sp: PPointer
      stackTop: array[0..1, pointer]
    sp = addr(stackTop[0])
    # Addresses decrease as the stack grows.
    while sp <= max:
      gcMark(sp^)
      sp = cast[ppointer](cast[TAddress](sp) +% sizeof(pointer))

elif defined(ELATE):
  {.error: "stack marking code is to be written for this architecture".}

elif defined(hppa) or defined(hp9000) or defined(hp9000s300) or
     defined(hp9000s700) or defined(hp9000s800) or defined(hp9000s820):
  # ---------------------------------------------------------------------------
  # Generic code for architectures where addresses increase as the stack grows.
  # ---------------------------------------------------------------------------
  proc isOnStack(p: pointer): bool =
    var stackTop: array [0..1, pointer]
    var a = cast[TAddress](stackBottom)
    var b = cast[TAddress](addr(stackTop[0]))
    var x = cast[TAddress](p)
    result = x >=% a and x <=% b

  var
    jmpbufSize {.importc: "sizeof(jmp_buf)", nodecl.}: int
      # a little hack to get the size of a TJmpBuf in the generated C code
      # in a platform independant way

  proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} =
    var registers: C_JmpBuf
    if c_setjmp(registers) == 0'i32: # To fill the C stack with registers.
      var max = cast[TAddress](stackBottom)
      var sp = cast[TAddress](addr(registers)) +% jmpbufSize -% sizeof(pointer)
      # sp will traverse the JMP_BUF as well (jmp_buf size is added,
      # otherwise sp would be below the registers structure).
      while sp >=% max:
        gcMark(cast[ppointer](sp)^)
        sp = sp -% sizeof(pointer)

else:
  # ---------------------------------------------------------------------------
  # Generic code for architectures where addresses decrease as the stack grows.
  # ---------------------------------------------------------------------------
  proc isOnStack(p: pointer): bool =
    var stackTop: array [0..1, pointer]
    var b = cast[TAddress](stackBottom)
    var a = cast[TAddress](addr(stackTop[0]))
    var x = cast[TAddress](p)
    result = x >=% a and x <=% b

  proc markStackAndRegisters(gch: var TGcHeap) {.noinline, cdecl.} =
    # We use a jmp_buf buffer that is in the C stack.
    # Used to traverse the stack and registers assuming
    # that 'setjmp' will save registers in the C stack.
    var registers: C_JmpBuf
    if c_setjmp(registers) == 0'i32: # To fill the C stack with registers.
      var max = cast[TAddress](stackBottom)
      var sp = cast[TAddress](addr(registers))
      while sp <=% max:
        gcMark(cast[ppointer](sp)^)
        sp = sp +% sizeof(pointer)

# ----------------------------------------------------------------------------
# end of non-portable code
# ----------------------------------------------------------------------------

proc CollectZCT(gch: var TGcHeap) =
  # Note: Freeing may add child objects to the ZCT! So essentially we do 
  # deep freeing, which is bad for incremental operation. In order to 
  # avoid a deep stack, we move objects to keep the ZCT small.
  # This is performance critical!
  var L = addr(gch.zct.len)
  while L^ > 0:
    var c = gch.zct.d[0]
    # remove from ZCT:
    assert((c.refcount and colorMask) == rcZct)
    c.refcount = c.refcount and not colorMask
    gch.zct.d[0] = gch.zct.d[L^ - 1]
    dec(L^)
    if c.refcount <% rcIncrement: 
      # It may have a RC > 0, if it is in the hardware stack or
      # it has not been removed yet from the ZCT. This is because
      # ``incref`` does not bother to remove the cell from the ZCT 
      # as this might be too slow.
      # In any case, it should be removed from the ZCT. But not
      # freed. **KEEP THIS IN MIND WHEN MAKING THIS INCREMENTAL!**
      if canBeCycleRoot(c): excl(gch.cycleRoots, c)
      when logGC: writeCell("zct dealloc cell", c)
      gcTrace(c, csZctFreed)
      # We are about to free the object, call the finalizer BEFORE its
      # children are deleted as well, because otherwise the finalizer may
      # access invalid memory. This is done by prepareDealloc():
      prepareDealloc(c)
      forAllChildren(c, waZctDecRef)
      when reallyDealloc: rawDealloc(allocator, c)
      else:
        assert(c.typ != nil)
        zeroMem(c, sizeof(TCell))

proc unmarkStackAndRegisters(gch: var TGcHeap) = 
  var d = gch.decStack.d
  for i in 0..gch.decStack.len-1:
    assert isAllocatedPtr(allocator, d[i])
    decRef(d[i]) # OPT: cannot create a cycle!
  gch.decStack.len = 0

proc collectCT(gch: var TGcHeap) =
  if gch.zct.len >= ZctThreshold or (cycleGC and
      getOccupiedMem() >= cycleThreshold) or stressGC:
    gch.stat.maxStackSize = max(gch.stat.maxStackSize, stackSize())
    assert(gch.decStack.len == 0)
    markStackAndRegisters(gch)
    gch.stat.maxStackCells = max(gch.stat.maxStackCells, gch.decStack.len)
    inc(gch.stat.stackScans)
    collectZCT(gch)
    when cycleGC:
      if getOccupiedMem() >= cycleThreshold or stressGC:
        collectCycles(gch)
        collectZCT(gch)
        inc(gch.stat.cycleCollections)
        cycleThreshold = max(InitialCycleThreshold, getOccupiedMem() *
                             cycleIncrease)
        gch.stat.maxThreshold = max(gch.stat.maxThreshold, cycleThreshold)
    unmarkStackAndRegisters(gch)

proc GC_fullCollect() =
  var oldThreshold = cycleThreshold
  cycleThreshold = 0 # forces cycle collection
  collectCT(gch)
  cycleThreshold = oldThreshold

proc GC_getStatistics(): string =
  GC_disable()
  result = "[GC] total memory: " & $(getTotalMem()) & "\n" &
           "[GC] occupied memory: " & $(getOccupiedMem()) & "\n" &
           "[GC] stack scans: " & $gch.stat.stackScans & "\n" &
           "[GC] stack cells: " & $gch.stat.maxStackCells & "\n" &
           "[GC] cycle collections: " & $gch.stat.cycleCollections & "\n" &
           "[GC] max threshold: " & $gch.stat.maxThreshold & "\n" &
           "[GC] zct capacity: " & $gch.zct.cap & "\n" &
           "[GC] max cycle table size: " & $gch.stat.cycleTableSize & "\n" &
           "[GC] max stack size: " & $gch.stat.maxStackSize
  when traceGC: writeLeakage()
  GC_enable()