blob: d3a46a13e869f780c95731102731d9e027348254 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
|
#!/bin/bash
# Dynamic Model Selector
# Intelligently selects models based on task type, availability, and capabilities
# --- Model Capability Database ---
# Model database using simple variables (compatible with older bash)
MODEL_DB_DIR="${LOG_DIR:-/tmp/ai_thinking}/model_db"
# Initialize model database with simple variables
init_model_database() {
# Create model database directory
mkdir -p "$MODEL_DB_DIR"
# Model capabilities by task type (using file-based storage for compatibility)
# === CONFIGURED MODELS ===
cat > "$MODEL_DB_DIR/llama3_8b_instruct_q4_K_M" << 'EOF'
coding=0.8
reasoning=0.9
creative=0.7
size=8
speed=0.8
EOF
cat > "$MODEL_DB_DIR/phi3_3_8b_mini_4k_instruct_q4_K_M" << 'EOF'
coding=0.7
reasoning=0.8
creative=0.6
size=3.8
speed=0.9
EOF
cat > "$MODEL_DB_DIR/deepseek_r1_1_5b" << 'EOF'
coding=0.6
reasoning=0.9
creative=0.5
size=1.5
speed=0.95
EOF
cat > "$MODEL_DB_DIR/gemma3n_e2b" << 'EOF'
coding=0.8
reasoning=0.8
creative=0.8
size=2
speed=0.85
EOF
cat > "$MODEL_DB_DIR/dolphin3_latest" << 'EOF'
coding=0.6
reasoning=0.7
creative=0.8
size=7
speed=0.7
EOF
# === ADDITIONAL MODELS FROM OLLAMA LIST ===
# Llama 3.1 - Newer version, should be similar to Llama 3 but potentially better
cat > "$MODEL_DB_DIR/llama3_1_8b" << 'EOF'
coding=0.82
reasoning=0.92
creative=0.72
size=8
speed=0.82
EOF
# DeepSeek R1 7B - Larger reasoning model
cat > "$MODEL_DB_DIR/deepseek_r1_7b" << 'EOF'
coding=0.65
reasoning=0.95
creative=0.55
size=7
speed=0.7
EOF
# Gemma 3N Latest - Larger version of e2b
cat > "$MODEL_DB_DIR/gemma3n_latest" << 'EOF'
coding=0.82
reasoning=0.82
creative=0.82
size=7.5
speed=0.8
EOF
# Gemma 3 4B - Different model family
cat > "$MODEL_DB_DIR/gemma3_4b" << 'EOF'
coding=0.75
reasoning=0.78
creative=0.75
size=4
speed=0.85
EOF
# Qwen2.5 7B - Alibaba model, general purpose
cat > "$MODEL_DB_DIR/qwen2_5_7b" << 'EOF'
coding=0.78
reasoning=0.85
creative=0.7
size=7
speed=0.75
EOF
# Qwen3 8B - Latest Qwen model
cat > "$MODEL_DB_DIR/qwen3_8b" << 'EOF'
coding=0.8
reasoning=0.88
creative=0.72
size=8
speed=0.78
EOF
# Qwen3 4B - Smaller Qwen model
cat > "$MODEL_DB_DIR/qwen3_4b" << 'EOF'
coding=0.75
reasoning=0.82
creative=0.68
size=4
speed=0.85
EOF
# Qwen3 1.7B - Smallest Qwen model
cat > "$MODEL_DB_DIR/qwen3_1_7b" << 'EOF'
coding=0.65
reasoning=0.7
creative=0.6
size=1.7
speed=0.95
EOF
# DeepScaler - Performance optimization focus
cat > "$MODEL_DB_DIR/deepscaler_latest" << 'EOF'
coding=0.7
reasoning=0.8
creative=0.65
size=3.6
speed=0.88
EOF
# Yasser Qwen2.5 - Fine-tuned variant
cat > "$MODEL_DB_DIR/yasserrmd_Qwen2_5_7B_Instruct_1M_latest" << 'EOF'
coding=0.82
reasoning=0.9
creative=0.75
size=7
speed=0.75
EOF
# Nomic Embed Text - Specialized for embeddings, not general tasks
cat > "$MODEL_DB_DIR/nomic_embed_text_latest" << 'EOF'
coding=0.1
reasoning=0.1
creative=0.1
size=0.274
speed=0.95
EOF
}
# Get model capability score
get_model_capability() {
local model_key="$1"
local task_type="$2"
# Convert model name to filename-friendly format
local safe_name=$(echo "$model_key" | tr ':' '_' | tr '.' '_')
local db_file="$MODEL_DB_DIR/$safe_name"
if [ -f "$db_file" ]; then
grep "^${task_type}=" "$db_file" | cut -d'=' -f2
else
echo "0.5" # Default capability score
fi
}
# Get model size
get_model_size() {
local model_key="$1"
local safe_name=$(echo "$model_key" | tr ':' '_' | tr '.' '_')
local db_file="$MODEL_DB_DIR/$safe_name"
if [ -f "$db_file" ]; then
grep "^size=" "$db_file" | cut -d'=' -f2
else
echo "5" # Default size
fi
}
# Get model speed
get_model_speed() {
local model_key="$1"
local safe_name=$(echo "$model_key" | tr ':' '_' | tr '.' '_')
local db_file="$MODEL_DB_DIR/$safe_name"
if [ -f "$db_file" ]; then
grep "^speed=" "$db_file" | cut -d'=' -f2
else
echo "0.5" # Default speed
fi
}
# --- Model Discovery ---
# Get list of available models
get_available_models() {
ollama list 2>/dev/null | tail -n +2 | awk '{print $1}' | sort
}
# Check if a model is available
is_model_available() {
local model="$1"
ollama list 2>/dev/null | grep -q "^${model}\s"
}
# --- Task Type Classification ---
# Classify task type from prompt and mechanism
classify_task_type() {
local prompt="$1"
local mechanism="$2"
# Task type classification based on mechanism
case "$mechanism" in
"puzzle")
echo "coding"
;;
"socratic")
echo "reasoning"
;;
"exploration")
echo "reasoning"
;;
"consensus")
echo "reasoning"
;;
"critique")
echo "reasoning"
;;
"synthesis")
echo "reasoning"
;;
"peer-review")
echo "reasoning"
;;
*)
# Fallback to keyword-based classification
if echo "$prompt" | grep -q -i "code\|algorithm\|function\|program\|implement"; then
echo "coding"
elif echo "$prompt" | grep -q -i "write\|story\|creative\|poem\|essay"; then
echo "creative"
else
echo "reasoning"
fi
;;
esac
}
# --- Model Selection Logic ---
# Select best model for task
select_best_model() {
local task_type="$1"
local available_models="$2"
local preferred_models="$3"
local best_model=""
local best_score=0
# First, try preferred models if available
if [ -n "$preferred_models" ]; then
for model in $preferred_models; do
if echo "$available_models" | grep -q "^${model}$" && is_model_available "$model"; then
local capability_score=$(get_model_capability "$model" "$task_type")
local speed_score=$(get_model_speed "$model")
local model_size=$(get_model_size "$model")
local size_score=$(echo "scale=2; $model_size / 10" | bc -l 2>/dev/null || echo "0.5")
# Calculate weighted score (capability is most important)
local total_score=$(echo "scale=2; ($capability_score * 0.6) + ($speed_score * 0.3) + ($size_score * 0.1)" | bc -l 2>/dev/null || echo "0.5")
if (( $(echo "$total_score > $best_score" | bc -l 2>/dev/null || echo "0") )); then
best_score=$total_score
best_model=$model
fi
fi
done
fi
# If no preferred model is good, find best available model
if [ -z "$best_model" ]; then
for model in $available_models; do
if is_model_available "$model"; then
local capability_score=$(get_model_capability "$model" "$task_type")
local speed_score=$(get_model_speed "$model")
local model_size=$(get_model_size "$model")
local size_score=$(echo "scale=2; $model_size / 10" | bc -l 2>/dev/null || echo "0.5")
local total_score=$(echo "scale=2; ($capability_score * 0.6) + ($speed_score * 0.3) + ($size_score * 0.1)" | bc -l 2>/dev/null || echo "0.5")
if (( $(echo "$total_score > $best_score" | bc -l 2>/dev/null || echo "0") )); then
best_score=$total_score
best_model=$model
fi
fi
done
fi
if [ -n "$best_model" ]; then
echo "Selected model: $best_model (score: $best_score, task: $task_type)" 1>&2
echo "$best_model"
else
echo "No suitable model found" >&2
echo ""
fi
}
# --- Main Selection Function ---
# Smart model selection
select_model_for_task() {
local prompt="$1"
local mechanism="$2"
local preferred_models="$3"
# Initialize database
init_model_database
# Get available models
local available_models
available_models=$(get_available_models)
if [ -z "$available_models" ]; then
echo "No models available via Ollama" >&2
echo ""
return 1
fi
# Classify task type
local task_type
task_type=$(classify_task_type "$prompt" "$mechanism")
# Select best model
local selected_model
selected_model=$(select_best_model "$task_type" "$available_models" "$preferred_models")
if [ -n "$selected_model" ]; then
echo "$selected_model"
return 0
else
echo ""
return 1
fi
}
# --- Utility Functions ---
# Get model info
get_model_info() {
local model="$1"
echo "Model: $model"
echo "Size: $(get_model_size "$model")B"
echo "Speed: $(get_model_speed "$model")"
echo "Coding: $(get_model_capability "$model" "coding")"
echo "Reasoning: $(get_model_capability "$model" "reasoning")"
echo "Creative: $(get_model_capability "$model" "creative")"
}
# Export functions
export -f init_model_database
export -f get_available_models
export -f is_model_available
export -f classify_task_type
export -f select_best_model
export -f select_model_for_task
export -f get_model_info
export -f get_model_capability
export -f get_model_size
export -f get_model_speed
|