1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
package main
import (
"fmt"
"math/rand"
"strings"
"time"
)
type Graph struct {
adjacencyList map[int][]int
}
func NewGraph() *Graph {
return &Graph{adjacencyList: make(map[int][]int)}
}
func (g *Graph) addEdge(node1, node2 int) {
g.adjacencyList[node1] = append(g.adjacencyList[node1], node2)
g.adjacencyList[node2] = append(g.adjacencyList[node2], node1)
}
func generateConnectedGraph(n int) *Graph {
rand.Seed(time.Now().UnixNano())
graph := NewGraph()
// Start with node 0
for i := 1; i < n; i++ {
// Connect the new node i to a random existing node
existingNode := rand.Intn(i)
graph.addEdge(i, existingNode)
}
return graph
}
func generateMermaid(graph *Graph) string {
var sb strings.Builder
sb.WriteString("graph TD;\n")
visited := make(map[string]bool)
for node, edges := range graph.adjacencyList {
for _, edge := range edges {
// Ensure each edge is only printed once
if !visited[fmt.Sprintf("%d-%d", node, edge)] && !visited[fmt.Sprintf("%d-%d", edge, node)] {
sb.WriteString(fmt.Sprintf(" %d --> %d;\n", node, edge))
visited[fmt.Sprintf("%d-%d", node, edge)] = true
}
}
}
return sb.String()
}
func main() {
graph := generateConnectedGraph(100)
mermaid := generateMermaid(graph)
fmt.Println(mermaid)
}
|