blob: 8893ef870f7aa11cd9f8050f2360d52e3b58f50d (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
;;; Logic problem inference system
;; Establish categories
to category :category.name :members
print (list "category :category.name :members)
if not namep "categories [make "categories []]
make "categories lput :category.name :categories
make :category.name :members
foreach :members [pprop ? "category :category.name]
end
;; Verify and falsify matches
to verify :a :b
settruth :a :b "true
end
to falsify :a :b
settruth :a :b "false
end
to settruth :a :b :truth.value
if equalp (gprop :a "category) (gprop :b "category) [stop]
localmake "oldvalue get :a :b
if equalp :oldvalue :truth.value [stop]
if equalp :oldvalue (not :truth.value) ~
[(throw "error (sentence [inconsistency in settruth]
:a :b :truth.value))]
print (list :a :b "-> :truth.value)
store :a :b :truth.value
settruth1 :a :b :truth.value
settruth1 :b :a :truth.value
if not emptyp :oldvalue ~
[foreach (filter [equalp first ? :truth.value] :oldvalue)
[apply "settruth butfirst ?]]
end
to settruth1 :a :b :truth.value
apply (word "find not :truth.value) (list :a :b)
foreach (gprop :a "true) [settruth ? :b :truth.value]
if :truth.value [foreach (gprop :a "false) [falsify ? :b]
pprop :a (gprop :b "category) :b]
pprop :a :truth.value (fput :b gprop :a :truth.value)
end
to findfalse :a :b
foreach (filter [not equalp get ? :b "true] peers :a) ~
[falsify ? :b]
end
to findtrue :a :b
if equalp (count peers :a) (1+falses :a :b) ~
[verify (find [not equalp get ? :b "false] peers :a)
:b]
end
to falses :a :b
output count filter [equalp "false get ? :b] peers :a
end
to peers :a
output thing gprop :a "category
end
;; Common types of clues
to differ :list
print (list "differ :list)
foreach :list [differ1 ? ?rest]
end
to differ1 :a :them
foreach :them [falsify :a ?]
end
to justbefore :this :that :lineup
falsify :this :that
falsify :this last :lineup
falsify :that first :lineup
justbefore1 :this :that :lineup
end
to justbefore1 :this :that :slotlist
if emptyp butfirst :slotlist [stop]
equiv :this (first :slotlist) :that (first butfirst :slotlist)
justbefore1 :this :that (butfirst :slotlist)
end
;; Remember conditional linkages
to implies :who1 :what1 :truth1 :who2 :what2 :truth2
implies1 :who1 :what1 :truth1 :who2 :what2 :truth2
implies1 :who2 :what2 (not :truth2) :who1 :what1 (not :truth1)
end
to implies1 :who1 :what1 :truth1 :who2 :what2 :truth2
localmake "old1 get :who1 :what1
if equalp :old1 :truth1 [settruth :who2 :what2 :truth2 stop]
if equalp :old1 (not :truth1) [stop]
if memberp (list :truth1 :who2 :what2 (not :truth2)) :old1 ~
[settruth :who1 :what1 (not :truth1) stop]
if memberp (list :truth1 :what2 :who2 (not :truth2)) :old1 ~
[settruth :who1 :what1 (not :truth1) stop]
store :who1 :what1 ~
fput (list :truth1 :who2 :what2 :truth2) :old1
end
to equiv :who1 :what1 :who2 :what2
implies :who1 :what1 "true :who2 :what2 "true
implies :who2 :what2 "true :who1 :what1 "true
end
to xor :who1 :what1 :who2 :what2
implies :who1 :what1 "true :who2 :what2 "false
implies :who1 :what1 "false :who2 :what2 "true
end
;; Interface to property list mechanism
to get :a :b
output gprop :a :b
end
to store :a :b :val
pprop :a :b :val
pprop :b :a :val
end
;; Print the solution
to solution
foreach thing first :categories [solve1 ? butfirst :categories]
end
to solve1 :who :order
type :who
foreach :order [type "| | type gprop :who ?]
print []
end
;; Get rid of old problem data
to cleanup
if not namep "categories [stop]
ern :categories
ern "categories
erpls
end
;; Anita Harnadek's problem
to cub.reporter
cleanup
category "first [Jane Larry Opal Perry]
category "last [Irving King Mendle Nathan]
category "age [32 38 45 55]
category "job [drafter pilot sergeant driver]
differ [Jane King Larry Nathan]
says "Jane "Irving 45
says "King "Perry "driver
says "Larry "sergeant 45
says "Nathan "drafter 38
differ [Mendle Jane Opal Nathan]
says "Mendle "pilot "Larry
says "Jane "pilot 45
says "Opal 55 "driver
says "Nathan 38 "driver
print []
solution
end
to says :who :what1 :what2
print (list "says :who :what1 :what2)
xor :who :what1 :who :what2
end
;; Diane Baldwin's problem
to foote.family
cleanup
category "when [1st 2nd 3rd 4th 5th]
category "name [Felix Fred Frank Francine Flo]
category "street [Field Flag Fig Fork Frond]
category "item [food film flashlight fan fiddle]
category "position [1 2 3 4 5]
print [Clue 1]
justbefore "Flag "2nd :position
justbefore "2nd "Fred :position
print [Clue 2]
male [film Fig 5th]
print [Clue 3]
justbefore "flashlight "Fork :position
justbefore "Fork "1st :position
female [1st]
print [Clue 4]
falsify "5th "Frond
falsify "5th "fan
print [Clue 5]
justbefore "Francine "Frank :position
justbefore "Francine "Frank :when
print [Clue 6]
female [3rd Flag]
print [Clue 7]
justbefore "fiddle "Frond :when
justbefore "Flo "fiddle :when
print []
solution
end
to male :stuff
differ sentence :stuff [Francine Flo]
end
to female :stuff
differ sentence :stuff [Felix Fred Frank]
end
;;; Combinatorics toolkit
to combs :list :howmany
if equalp :howmany 0 [output [[]]]
if equalp :howmany count :list [output (list :list)]
output sentence (map [fput first :list ?]
combs (butfirst :list) (:howmany-1)) ~
(combs (butfirst :list) :howmany)
end
to fact :n
output cascade :n [# * ?] 1
end
to perms :n :r
if equalp :r 0 [output 1]
output :n * perms :n-1 :r-1
end
to choose :n :r
output (perms :n :r)/(fact :r)
end
;; The socks problem
to socks :list
localmake "total combs (expand :list) 2
localmake "matching filter [equalp first ? last ?] :total
print (sentence [there are] count :total [possible pairs of socks.])
print (sentence [of these,] count :matching [are matching pairs.])
print sentence [probability of match =] ~
word (100 * (count :matching)/(count :total)) "%
end
to expand :list
if emptyp :list [output []]
if numberp first :list ~
[output cascade (first :list)
[fput first butfirst :list ?]
(expand butfirst butfirst :list)]
output fput first :list expand butfirst :list
end
to socktest
localmake "first pick [brown brown brown brown brown brown
blue blue blue blue]
localmake "second ~
pick (ifelse equalp :first "brown ~
[[brown brown brown brown brown
blue blue blue blue]] ~
[[brown brown brown brown brown brown
blue blue blue]])
output equalp :first :second
end
;; The Simplex lock problem
to lock :buttons
output cascade :buttons [? + lock1 :buttons #] 1
end
to lock1 :total :buttons
localmake "perms perms :total :buttons
output cascade (twoto (:buttons-1)) [? + lock2 :perms #-1 1] 0
end
to lock2 :perms :links :factor
if equalp :links 0 [output :perms/(fact :factor)]
if equalp (remainder :links 2) 0 ~
[output lock2 :perms/(fact :factor) :links/2 1]
output lock2 :perms (:links-1)/2 :factor+1
end
to twoto :power
output cascade :power [2 * ?] 1
end
to simplex :buttons
output 2 * f :buttons
end
to f :n
if equalp :n 0 [output 1]
output cascade :n [? + ((choose :n (#-1)) * f (#-1))] 0
end
to simp :n
output round (fact :n)/(power (ln 2) (:n+1))
end
;; The multinomial expansion problem
to t :n :k
if equalp :k 0 [output 1]
if equalp :n 0 [output 0]
output (t :n :k-1)+(t :n-1 :k)
end
|