1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
// Blur management module
// Uses the Observer pattern to notify the main camera module of blur changes
const BlurManager = {
// Private state
_currentBlur: 0, // Default blur (no blur)
_observers: new Set(),
_slider: null,
_value: null,
// Initialize the blur manager
init() {
this._slider = document.getElementById('blur-slider');
this._value = document.getElementById('blur-value');
this._setupEventListeners();
},
// Private methods
_setupEventListeners() {
this._slider.addEventListener('input', () => {
const value = this._slider.value;
this._value.textContent = `${value}%`;
this._currentBlur = parseInt(value);
this._notifyObservers();
});
},
_notifyObservers() {
this._observers.forEach(observer => observer(this._currentBlur));
},
// Public methods
subscribe(observer) {
this._observers.add(observer);
return () => this._observers.delete(observer);
},
getCurrentBlur() {
return this._currentBlur;
},
// Apply Gaussian blur to an image
applyBlur(imageData, radius) {
if (!radius) return imageData;
const { data, width, height } = imageData;
const tempData = new Uint8ClampedArray(data);
// Calculate the actual image boundaries
let minX = width, minY = height, maxX = 0, maxY = 0;
let hasContent = false;
// Find the actual image boundaries
for (let y = 0; y < height; y++) {
for (let x = 0; x < width; x++) {
const i = (y * width + x) * 4;
if (data[i + 3] > 0) { // Check alpha channel
hasContent = true;
minX = Math.min(minX, x);
minY = Math.min(minY, y);
maxX = Math.max(maxX, x);
maxY = Math.max(maxY, y);
}
}
}
if (!hasContent) return imageData;
// Add padding to boundaries to prevent edge artifacts
minX = Math.max(0, minX - radius);
minY = Math.max(0, minY - radius);
maxX = Math.min(width - 1, maxX + radius);
maxY = Math.min(height - 1, maxY + radius);
// Optimized box blur implementation
// First pass: horizontal blur
for (let y = minY; y <= maxY; y++) {
for (let x = minX; x <= maxX; x++) {
let r = 0, g = 0, b = 0, a = 0;
let count = 0;
// Calculate horizontal blur for this pixel
for (let dx = -radius; dx <= radius; dx++) {
const nx = x + dx;
if (nx >= 0 && nx < width) {
const i = (y * width + nx) * 4;
r += data[i];
g += data[i + 1];
b += data[i + 2];
a += data[i + 3];
count++;
}
}
// Store horizontal blur result
const i = (y * width + x) * 4;
tempData[i] = r / count;
tempData[i + 1] = g / count;
tempData[i + 2] = b / count;
tempData[i + 3] = a / count;
}
}
// Second pass: vertical blur
for (let y = minY; y <= maxY; y++) {
for (let x = minX; x <= maxX; x++) {
let r = 0, g = 0, b = 0, a = 0;
let count = 0;
// Calculate vertical blur for this pixel
for (let dy = -radius; dy <= radius; dy++) {
const ny = y + dy;
if (ny >= 0 && ny < height) {
const i = (ny * width + x) * 4;
r += tempData[i];
g += tempData[i + 1];
b += tempData[i + 2];
a += tempData[i + 3];
count++;
}
}
// Store final blur result
const i = (y * width + x) * 4;
data[i] = r / count;
data[i + 1] = g / count;
data[i + 2] = b / count;
data[i + 3] = a / count;
}
}
return imageData;
},
// Create a 1D Gaussian kernel
_createGaussianKernel(radius) {
const sigma = radius / 3;
const kernelSize = Math.ceil(radius * 2 + 1);
const kernel = new Array(kernelSize);
let sum = 0;
for (let i = 0; i < kernelSize; i++) {
const x = i - radius;
kernel[i] = Math.exp(-(x * x) / (2 * sigma * sigma));
sum += kernel[i];
}
// Normalize the kernel
for (let i = 0; i < kernelSize; i++) {
kernel[i] /= sum;
}
return kernel;
},
// Add reset method
reset() {
this._currentBlur = 0;
this._slider.value = 0;
this._value.textContent = '0%';
this._notifyObservers();
}
};
|