1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
import Foundation
let rows: Int = 10
let cols: Int = 10
func printBoard(_ board: [[Int]]) {
board.forEach { row in
row.forEach { cell in
print(cell == 1 ? "@" : ".", terminator: "")
}
print()
}
print("\n")
}
// Are these comments enough for a blog post?
func countLiveNeighbors(_ board: [[Int]], x: Int, y: Int) -> Int {
// All of the possible directions to check for live neighbors
let directions: [(Int, Int)] = [(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1)]
// Iterate over the directions and count live neighbors
return directions.reduce(0) { count, dir in
// Calculate the coordinates of the neighbor cell
let newX: Int = x + dir.0
let newY: Int = y + dir.1
// Check if the neighbor cell is within the bounds of the board
if newX >= 0 && newX < rows && newY >= 0 && newY < cols {
// If the neighbor cell is within bounds, add its value to the count
return count + board[newX][newY]
}
// If the neighbor cell is out of bounds, ignore it and continue with the next direction
return count
}
}
func nextGeneration(_ currentBoard: [[Int]]) -> [[Int]] {
// Iterate over each cell in the current board
return currentBoard.enumerated().map { (x: Int, row: [Int]) in
return row.enumerated().map { (y: Int, cell: Int) in
// Count the number of live neighbors for the current cell
let liveNeighbors: Int = countLiveNeighbors(currentBoard, x: x, y: y)
// Determine the next state of the cell
if cell == 1 && (liveNeighbors < 2 || liveNeighbors > 3) {
// Determine death
return 0
} else if cell == 0 && liveNeighbors == 3 {
// Determine life
return 1
}
// Do nothing
return cell
}
}
}
func simulate(board: [[Int]], generations: Int) {
var currentBoard: [[Int]] = board
for _ in 0..<generations {
printBoard(currentBoard)
currentBoard = nextGeneration(currentBoard)
sleep(1) // FIXME: figure out how to sleep for periods shorter than a full second
}
}
var glider: [[Int]] = Array(repeating: Array(repeating: 0, count: cols), count: rows)
glider[1][2] = 1
glider[2][3] = 1
glider[3][1] = 1
glider[3][2] = 1
glider[3][3] = 1
simulate(board: glider, generations: 10)
var flasher: [[Int]] = Array(repeating: Array(repeating: 0, count: cols), count: rows)
flasher[4][5] = 1
flasher[5][5] = 1
flasher[6][5] = 1
simulate(board: flasher, generations: 4)
var beacon: [[Int]] = Array(repeating: Array(repeating: 0, count: cols), count: rows)
beacon[2][2] = 1
beacon[2][3] = 1
beacon[3][2] = 1
beacon[4][5] = 1
beacon[5][4] = 1
beacon[5][5] = 1
simulate(board: beacon, generations: 4)
var toad: [[Int]] = Array(repeating: Array(repeating: 0, count: cols), count: rows)
toad[3][4] = 1
toad[3][5] = 1
toad[3][6] = 1
toad[4][3] = 1
toad[4][4] = 1
toad[4][5] = 1
simulate(board: toad, generations: 5)
var rpentomino: [[Int]] = Array(repeating: Array(repeating: 0, count: cols), count: rows)
rpentomino[3][4] = 1
rpentomino[3][5] = 1
rpentomino[4][3] = 1
rpentomino[4][4] = 1
rpentomino[5][4] = 1
simulate(board: rpentomino, generations: 22)
func randomBoard() -> [[Int]] {
return (0..<rows).map { _ in
return (0..<cols).map { _ in
return Int.random(in: 0...1)
}
}
}
simulate(board: randomBoard(), generations: 10)
|