about summary refs log tree commit diff stats
path: root/renderfloat/renderfloat.go
blob: 042a36dfaef3c5fc94ede8bb374f9fb9d3c5ad7c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/*

Author: https://github.com/gorhill
Source: https://gist.github.com/gorhill/5285193

A Go function to render a number to a string based on
the following user-specified criteria:

* thousands separator
* decimal separator
* decimal precision

Usage: s := RenderFloat(format, n)

The format parameter tells how to render the number n.

http://play.golang.org/p/LXc1Ddm1lJ

Examples of format strings, given n = 12345.6789:

"#,###.##" => "12,345.67"
"#,###." => "12,345"
"#,###" => "12345,678"
"#\u202F###,##" => "12 345,67"
"#.###,###### => 12.345,678900
"" (aka default format) => 12,345.67

The highest precision allowed is 9 digits after the decimal symbol.
There is also a version for integer number, RenderInteger(),
which is convenient for calls within template.

I didn't feel it was worth to publish a library just for this piece
of code, hence the snippet. Feel free to reuse as you wish.
[my note: the WTFPL was attached: DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE]

*/
package renderfloat

import (
"math"
"strconv"
)

var renderFloatPrecisionMultipliers = [10]float64{
1,
10,
100,
1000,
10000,
100000,
1000000,
10000000,
100000000,
1000000000,
}

var renderFloatPrecisionRounders = [10]float64{
0.5,
0.05,
0.005,
0.0005,
0.00005,
0.000005,
0.0000005,
0.00000005,
0.000000005,
0.0000000005,
}

func RenderFloat(format string, n float64) string {
// Special cases:
//   NaN = "NaN"
//   +Inf = "+Infinity"
//   -Inf = "-Infinity"
if math.IsNaN(n) {
return "NaN"
}
if n > math.MaxFloat64 {
return "Infinity"
}
if n < -math.MaxFloat64 {
return "-Infinity"
}

// default format
precision := 2
decimalStr := "."
thousandStr := ","
positiveStr := ""
negativeStr := "-"

if len(format) > 0 {
// If there is an explicit format directive,
// then default values are these:
precision = 9
thousandStr = ""

// collect indices of meaningful formatting directives
formatDirectiveChars := []rune(format)
formatDirectiveIndices := make([]int, 0)
for i, char := range formatDirectiveChars {
if char != '#' && char != '0' {
formatDirectiveIndices = append(formatDirectiveIndices, i)
}
}

if len(formatDirectiveIndices) > 0 {
// Directive at index 0:
//   Must be a '+'
//   Raise an error if not the case
// index: 0123456789
//        +0.000,000
//        +000,000.0
//        +0000.00
//        +0000
if formatDirectiveIndices[0] == 0 {
if formatDirectiveChars[formatDirectiveIndices[0]] != '+' {
panic("RenderFloat(): invalid positive sign directive")
}
positiveStr = "+"
formatDirectiveIndices = formatDirectiveIndices[1:]
}

// Two directives:
//   First is thousands separator
//   Raise an error if not followed by 3-digit
// 0123456789
// 0.000,000
// 000,000.00
if len(formatDirectiveIndices) == 2 {
if (formatDirectiveIndices[1] - formatDirectiveIndices[0]) != 4 {
panic("RenderFloat(): thousands separator directive must be followed by 3 digit-specifiers")
}
thousandStr = string(formatDirectiveChars[formatDirectiveIndices[0]])
formatDirectiveIndices = formatDirectiveIndices[1:]
}

// One directive:
//   Directive is decimal separator
//   The number of digit-specifier following the separator indicates wanted precision
// 0123456789
// 0.00
// 000,0000
if len(formatDirectiveIndices) == 1 {
decimalStr = string(formatDirectiveChars[formatDirectiveIndices[0]])
precision = len(formatDirectiveChars) - formatDirectiveIndices[0] - 1
}
}
}

// generate sign part
var signStr string
if n >= 0.000000001 {
signStr = positiveStr
} else if n <= -0.000000001 {
signStr = negativeStr
n = -n
} else {
signStr = ""
n = 0.0
}

// split number into integer and fractional parts
intf, fracf := math.Modf(n + renderFloatPrecisionRounders[precision])

// generate integer part string
intStr := strconv.Itoa(int(intf))

// add thousand separator if required
if len(thousandStr) > 0 {
for i := len(intStr); i > 3; {
i -= 3
intStr = intStr[:i] + thousandStr + intStr[i:]
}
}

// no fractional part, we can leave now
if precision == 0 {
return signStr + intStr
}

// generate fractional part
fracStr := strconv.Itoa(int(fracf * renderFloatPrecisionMultipliers[precision]))
// may need padding
if len(fracStr) < precision {
fracStr = "000000000000000"[:precision-len(fracStr)] + fracStr
}

return signStr + intStr + decimalStr + fracStr
}

func RenderInteger(format string, n int) string {
return RenderFloat(format, float64(n))
}