about summary refs log tree commit diff stats
path: root/js/leibovitz
diff options
context:
space:
mode:
Diffstat (limited to 'js/leibovitz')
-rw-r--r--js/leibovitz/blur.js129
1 files changed, 77 insertions, 52 deletions
diff --git a/js/leibovitz/blur.js b/js/leibovitz/blur.js
index 6c7aff9..08d1ec5 100644
--- a/js/leibovitz/blur.js
+++ b/js/leibovitz/blur.js
@@ -6,20 +6,21 @@ const BlurManager = {
     _currentBlur: 0, // Default blur (no blur)
     _observers: new Set(),
     _slider: null,
+    _value: null,
 
     // Initialize the blur manager
     init() {
+        this._slider = document.getElementById('blur-slider');
+        this._value = document.getElementById('blur-value');
         this._setupEventListeners();
     },
 
     // Private methods
     _setupEventListeners() {
-        this._slider = document.getElementById('blur-slider');
-        this._slider.addEventListener('input', (e) => {
-            this._currentBlur = parseInt(e.target.value);
-            // Update the display value as a percentage
-            document.getElementById('blur-value').textContent = 
-                `${Math.round((this._currentBlur / 20) * 100)}%`;
+        this._slider.addEventListener('input', () => {
+            const value = this._slider.value;
+            this._value.textContent = `${value}%`;
+            this._currentBlur = parseInt(value);
             this._notifyObservers();
         });
     },
@@ -40,72 +41,95 @@ const BlurManager = {
 
     // Apply Gaussian blur to an image
     applyBlur(imageData, radius) {
-        if (!radius || radius <= 0) return imageData;
+        if (!radius) return imageData;
 
         const { data, width, height } = imageData;
-        const newData = new Uint8ClampedArray(data);
+        const tempData = new Uint8ClampedArray(data);
         
-        // Create Gaussian kernel
-        const kernel = this._createGaussianKernel(radius);
-        const kernelSize = kernel.length;
-        const kernelRadius = Math.floor(kernelSize / 2);
+        // Calculate the actual image boundaries
+        let minX = width, minY = height, maxX = 0, maxY = 0;
+        let hasContent = false;
 
-        // Apply horizontal blur
+        // Find the actual image boundaries
         for (let y = 0; y < height; y++) {
             for (let x = 0; x < width; x++) {
-                const idx = (y * width + x) * 4;
+                const i = (y * width + x) * 4;
+                if (data[i + 3] > 0) { // Check alpha channel
+                    hasContent = true;
+                    minX = Math.min(minX, x);
+                    minY = Math.min(minY, y);
+                    maxX = Math.max(maxX, x);
+                    maxY = Math.max(maxY, y);
+                }
+            }
+        }
+
+        if (!hasContent) return imageData;
+
+        // Add padding to boundaries to prevent edge artifacts
+        minX = Math.max(0, minX - radius);
+        minY = Math.max(0, minY - radius);
+        maxX = Math.min(width - 1, maxX + radius);
+        maxY = Math.min(height - 1, maxY + radius);
+
+        // Optimized box blur implementation
+        // First pass: horizontal blur
+        for (let y = minY; y <= maxY; y++) {
+            for (let x = minX; x <= maxX; x++) {
                 let r = 0, g = 0, b = 0, a = 0;
-                let weightSum = 0;
-
-                for (let i = -kernelRadius; i <= kernelRadius; i++) {
-                    const px = x + i;
-                    if (px >= 0 && px < width) {
-                        const pixelIdx = (y * width + px) * 4;
-                        const weight = kernel[i + kernelRadius];
-                        r += data[pixelIdx] * weight;
-                        g += data[pixelIdx + 1] * weight;
-                        b += data[pixelIdx + 2] * weight;
-                        a += data[pixelIdx + 3] * weight;
-                        weightSum += weight;
+                let count = 0;
+
+                // Calculate horizontal blur for this pixel
+                for (let dx = -radius; dx <= radius; dx++) {
+                    const nx = x + dx;
+                    if (nx >= 0 && nx < width) {
+                        const i = (y * width + nx) * 4;
+                        r += data[i];
+                        g += data[i + 1];
+                        b += data[i + 2];
+                        a += data[i + 3];
+                        count++;
                     }
                 }
 
-                newData[idx] = r / weightSum;
-                newData[idx + 1] = g / weightSum;
-                newData[idx + 2] = b / weightSum;
-                newData[idx + 3] = a / weightSum;
+                // Store horizontal blur result
+                const i = (y * width + x) * 4;
+                tempData[i] = r / count;
+                tempData[i + 1] = g / count;
+                tempData[i + 2] = b / count;
+                tempData[i + 3] = a / count;
             }
         }
 
-        // Apply vertical blur
-        const finalData = new Uint8ClampedArray(newData);
-        for (let y = 0; y < height; y++) {
-            for (let x = 0; x < width; x++) {
-                const idx = (y * width + x) * 4;
+        // Second pass: vertical blur
+        for (let y = minY; y <= maxY; y++) {
+            for (let x = minX; x <= maxX; x++) {
                 let r = 0, g = 0, b = 0, a = 0;
-                let weightSum = 0;
-
-                for (let i = -kernelRadius; i <= kernelRadius; i++) {
-                    const py = y + i;
-                    if (py >= 0 && py < height) {
-                        const pixelIdx = (py * width + x) * 4;
-                        const weight = kernel[i + kernelRadius];
-                        r += newData[pixelIdx] * weight;
-                        g += newData[pixelIdx + 1] * weight;
-                        b += newData[pixelIdx + 2] * weight;
-                        a += newData[pixelIdx + 3] * weight;
-                        weightSum += weight;
+                let count = 0;
+
+                // Calculate vertical blur for this pixel
+                for (let dy = -radius; dy <= radius; dy++) {
+                    const ny = y + dy;
+                    if (ny >= 0 && ny < height) {
+                        const i = (ny * width + x) * 4;
+                        r += tempData[i];
+                        g += tempData[i + 1];
+                        b += tempData[i + 2];
+                        a += tempData[i + 3];
+                        count++;
                     }
                 }
 
-                finalData[idx] = r / weightSum;
-                finalData[idx + 1] = g / weightSum;
-                finalData[idx + 2] = b / weightSum;
-                finalData[idx + 3] = a / weightSum;
+                // Store final blur result
+                const i = (y * width + x) * 4;
+                data[i] = r / count;
+                data[i + 1] = g / count;
+                data[i + 2] = b / count;
+                data[i + 3] = a / count;
             }
         }
 
-        return new ImageData(finalData, width, height);
+        return imageData;
     },
 
     // Create a 1D Gaussian kernel
@@ -133,6 +157,7 @@ const BlurManager = {
     reset() {
         this._currentBlur = 0;
         this._slider.value = 0;
+        this._value.textContent = '0%';
         this._notifyObservers();
     }
 }; 
\ No newline at end of file
='n275' href='#n275'>275 276 277 278 279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368